【題目】有一種新型的洗衣液,去污速度特別快.已知每投放個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間 (分鐘) 變化的函數(shù)關(guān)系式近似為,其中.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(/升)時,它才能起到有效去污的作用.

1若投放個單位的洗衣液,3分鐘時水中洗衣液的濃度為4 (/),的值;

2)若投放4個單位的洗衣液,則有效去污時間可達幾分鐘?

【答案】1;(2 14分鐘.

【解析】試題分析:1已知分鐘時洗衣液的濃度為/升,代入時的函數(shù)關(guān)系式可得,結(jié)合即可得到的值;(2)當(dāng),根據(jù)題意可得到關(guān)于的函數(shù)關(guān)系式,該函數(shù)分兩段;要有效去污,,根據(jù)函數(shù)關(guān)系式分別求解兩段內(nèi)有效去污時的范圍,綜合兩種情況即可得到有效去污的時間.

試題解析(1)由題意知, 解得;

(2)當(dāng),所以

當(dāng),解得,所以.

當(dāng),解得,所以

綜上, .

答:故若投放4個單位的洗衣液則有效去污時間可達14分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的所有棱長都相等且側(cè)棱垂直于底面,沿棱柱側(cè)面經(jīng)過棱到點的最短路線長為,設(shè)這條最短路線與的交點為

(1)求三棱柱的體積;

(2)證明:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大。
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 底面為等邊三角形, 的中點.

(1)求證:直線平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga (a>0且a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并說明理由;
(3)當(dāng)x∈(n,a﹣2)時,函數(shù)f(x)的值域為(1,+∞),求實數(shù)n,a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下判斷: ①f(x)= 與g(x)= 表示同一函數(shù);
②函數(shù)y=f(x)的圖象與直線x=1的交點最多有1個;
③f(x)=x2﹣2x+1與g(t)=t2﹣2t+1是同一函數(shù);
④若f(x)=|x﹣1|﹣|x|,則f(f( ))=0.
其中正確判斷的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x3﹣ax+2=0有三個不同實數(shù)解,則實數(shù)a的取值范圍是(
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)的定義域為,且存在非零常數(shù),對任意, 恒成立,則稱為線周期函數(shù), 的線周期.

(Ⅰ)下列函數(shù)①,②,③(其中表示不超過的最大整數(shù)),是線周期函數(shù)的是(直接填寫序號);

(Ⅱ)若為線周期函數(shù),其線周期為,求證:函數(shù)為周期函數(shù);

(Ⅲ)若為線周期函數(shù),求的值.

查看答案和解析>>

同步練習(xí)冊答案