已知直線(xiàn)l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線(xiàn)l且與圓C相切的直線(xiàn)l′的方程;
(2)過(guò)直線(xiàn)l上的動(dòng)點(diǎn)P作圓C的一條切線(xiàn),設(shè)切點(diǎn)為T(mén),求PT的最小值.
考點(diǎn):直線(xiàn)和圓的方程的應(yīng)用
專(zhuān)題:直線(xiàn)與圓
分析:第(1)問(wèn)由直線(xiàn)l′與直線(xiàn)l垂直可得其斜率,再利用待定系數(shù)法結(jié)合直線(xiàn)與圓相切的條件列出關(guān)于待定系數(shù)的方程求解;
第(2)問(wèn)利用切線(xiàn)的性質(zhì),即切線(xiàn)長(zhǎng)平方加上半徑的平方等于P點(diǎn)到圓心距離的平方,從而把求PT的最小值轉(zhuǎn)化為求動(dòng)點(diǎn)P到圓心的距離的最小值,顯然就是圓心到直線(xiàn)的距離最小.
解答: 解:∵l:2x+y+2=0及圓C:x2+y2=2y,即x2+(y-1)2=1,∴圓心C(0,1),r=1,
(1)∵l′⊥l,∴kl′=
1
2
,設(shè)l′的方程為 y=
1
2
x+b
,即x-2y+2b=0,
則由l′與圓C相切得
|-2+2b|
5
=1
,解得b=1±
5
2
,
所以切線(xiàn)方程為x-2y+2+
5
=0
x-2y+2-
5
=0

(2)如圖所示,設(shè)切點(diǎn)為T(mén),P是直線(xiàn)上任一點(diǎn),則由切線(xiàn)的性質(zhì)可知PC2=PT2+1,所以要使PT最小,只需PC最小,則當(dāng)PC⊥l時(shí),PC最小,
此時(shí)PC表示C到直線(xiàn)l的距離,∴PC=
|1+2|
5
=
3
5
5
,PTmin=
(
3
5
5
)2-1
=
2
5
5

點(diǎn)評(píng):直線(xiàn)與圓的位置關(guān)系,比如切線(xiàn)及切線(xiàn)長(zhǎng)問(wèn)題,弦長(zhǎng)問(wèn)題等的處理,一般用幾何法即通過(guò)研究圓心到直線(xiàn)的距離、半徑等的關(guān)系解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出結(jié)果為( 。
A、初始輸入中的a值
B、三個(gè)數(shù)中的最大值
C、三個(gè)數(shù)中的最小值
D、初始輸入中的c值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,2),
b
=(10,5),則
a
b
(  )
A、垂直B、平行
C、相交但不垂直D、無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c,d,求函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c都是正數(shù),求
a
b+c
+
b
c+a
+
c
a+b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,b),點(diǎn)B的坐標(biāo)為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(Ⅰ)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,π]內(nèi)的解集;
(Ⅱ)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當(dāng)x∈R時(shí),試寫(xiě)出一組a,b,ω值,使得函數(shù)f(x)滿(mǎn)足“圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱(chēng),且在x=
π
6
處f(x)取得最小值”.(請(qǐng)說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn)?用水量不超過(guò)a的部分按照平價(jià)收費(fèi),超過(guò)a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過(guò)抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖,
(Ⅰ)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請(qǐng)?jiān)趫D中將其補(bǔ)充完整;
(Ⅱ)用樣本估計(jì)總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn),則月均用水量的最低標(biāo)準(zhǔn)定為多少?lài),并說(shuō)明理由;
(Ⅲ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機(jī)調(diào)查3位居民的月均用水量(看作有放回的抽樣),其中月均用水量不超過(guò)(Ⅱ)中最低標(biāo)準(zhǔn)的人數(shù)為x,求x的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個(gè)紅球,2個(gè)白球;乙袋裝有2個(gè)紅球,n個(gè)白球.從甲,乙兩袋中各任取2個(gè)球.
(Ⅰ)當(dāng)n=1時(shí),記取到的4個(gè)球中是白球的個(gè)數(shù)為ξ,求ξ的分布列和期望;
(Ⅱ)若取到的4個(gè)球中至少有2個(gè)紅球的概率為
3
4
,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)點(diǎn)F(-5,0)且與定圓x2+y2-10x-11=0相外切,求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案