【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機(jī)器時應(yīng)同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺機(jī)器在維修上所需的費用(單位:元),表示購機(jī)的同時購買的維修服務(wù)次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計算這100臺機(jī)器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買10次還是11次維修服務(wù)?
【答案】(1) ;(2)見解析;(3)10次.
【解析】分析:(1)根據(jù)題意寫出分段函數(shù)即可;(2)計算出“維修次數(shù)不大于10或11次”的頻率,再比較得到答案;(3)利用表格得到費用的所有可能取值及相應(yīng)頻率,再利用平均數(shù)公式進(jìn)行求解,再比較兩個平均數(shù)即可.
詳解:(1)
即 .
(2)因為 “維修次數(shù)不大于”的頻率,
“維修次數(shù)不大于”的頻率=,
所以若要求“維修次數(shù)不大于”的頻率不小于0.8,則n的最小值為11.
(3)若每臺都購買10次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費用y | 2400 | 2450 | 2500 | 3000 | 3500 |
此時這100臺機(jī)器在維修上所需費用的平均數(shù)為
2730(元)
若每臺都購買11次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費用y | 2600 | 2650 | 2700 | 2750 | 3250 |
此時這100臺機(jī)器在維修上所需費用的平均數(shù)為
2750(元)
因為,所以購買1臺機(jī)器的同時應(yīng)購買10次維修服務(wù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子500米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計觀看冬奧會的時間情況,收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機(jī)抽取20個人,已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,,…,,,完成下圖的頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù),已知200位男生中累計觀看時間小于20小時的男生有50人.請完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會累計時間與性別有關(guān)”.
附:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺的函數(shù);
(2)當(dāng)產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.
(1)求證:;
(2)若,,四棱錐的體積為,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:),其頻率分布直方圖如下:
(1)網(wǎng)箱產(chǎn)量不低于為“理想網(wǎng)箱”,填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“理想網(wǎng)箱”的數(shù)目與養(yǎng)殖方法有關(guān):
箱產(chǎn)量 | 箱產(chǎn)量 | 合計 | |
舊養(yǎng)殖法 | |||
新養(yǎng)殖法 | |||
合計 |
(2)已知舊養(yǎng)殖法個網(wǎng)箱需要成本元,新養(yǎng)殖法個網(wǎng)箱需要增加成本元,該水產(chǎn)品的市場價格為元/,根據(jù)箱產(chǎn)量的頻率分布直方圖(說明:同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表),采用哪種養(yǎng)殖法,請給養(yǎng)殖戶一個較好的建議,并說明理由.
附參考公式及參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的兩點,已知向量,,若且橢圓的離心率,短軸長為2,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;
(3)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若的負(fù)整數(shù)解有且只有兩個,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若的定義域為R,求a的取值范圍;
若,求的單調(diào)區(qū)間;
是否存在實數(shù)a,使在上為增函數(shù)?若存在,求出a的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
相關(guān)公式:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com