【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):

6

8

10

12

2

3

5

6

(1)請(qǐng)?jiān)趫D中畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.

相關(guān)公式:,.

【答案】1=0.7x-2.3;(24

【解析】

試題

把所給的四對(duì)數(shù)據(jù)寫(xiě)成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來(lái)即可得到散點(diǎn)圖.

由題意求出橫標(biāo)和縱標(biāo)的平均數(shù),求出系數(shù),再求出的值,即可得到回歸方程,注意運(yùn)算不要出錯(cuò).

由回歸直線方程預(yù)測(cè),記憶力為9的同學(xué)的判斷力約為4

試題解析:

把所給的四對(duì)數(shù)據(jù)寫(xiě)成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來(lái),得到散點(diǎn)圖如圖所示:

(2)由題意得

,

,

,

,

∴線性回歸方程為

由回歸直線方程知,當(dāng)時(shí),,

所以預(yù)測(cè)記憶力為9的同學(xué)的判斷力約為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買(mǎi)幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)機(jī)時(shí)購(gòu)買(mǎi)的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi).現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買(mǎi)幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)10次維修服務(wù),或每臺(tái)都購(gòu)買(mǎi)11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家張丘建是世界數(shù)學(xué)史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個(gè)解不定方程的百雞問(wèn)題,問(wèn)題如下:雞翁一,值錢(qián)五,雞母一,值錢(qián)三,雞雛三,值錢(qián)一.百錢(qián)買(mǎi)百雞,問(wèn)雞翁母雛各幾何?用代數(shù)方法表述為:設(shè)雞翁、雞母、雞雛的數(shù)量分別為,,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過(guò)程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn),動(dòng)點(diǎn)在直線上移動(dòng),橢圓為焦點(diǎn)且經(jīng)過(guò)點(diǎn),則橢圓的離心率的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.

C的普通方程和直線的傾斜角;

設(shè)點(diǎn)(0,2),交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為.若將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

(1)求函數(shù)的解析式;

(2)若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)兩定點(diǎn),及動(dòng)點(diǎn)的兩邊所在直線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)軸上的一點(diǎn),若(1)中軌跡上存在兩點(diǎn)使得,求以為直徑的圓面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列,且)求數(shù)列的通項(xiàng)公式;()記的前項(xiàng)和為,若成等比數(shù)列,求正整數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】復(fù)利是一種計(jì)算利息的方法.即把前一期的利息和本金加在一起算作本金,再計(jì)算下一期的利息.某同學(xué)有壓歲錢(qián)1000元,存入銀行,年利率為2.25%;若放入微信零錢(qián)通或

者支付寶的余額寶,年利率可達(dá)4.01%.如果將這1000元選擇合適方式存滿(mǎn)5年,可以多獲利息( )元.參考數(shù)據(jù):

A. 176 B. 100 C. 77 D. 88

查看答案和解析>>

同步練習(xí)冊(cè)答案