【題目】已知橢圓 離心率等于,、是橢圓上的兩點.

(1)求橢圓的方程;

(2)是橢圓上位于直線兩側(cè)的動點.當運動時,滿足,試問直線的斜率是否為定值?如果為定值,請求出此定值;如果不是定值,請說明理由.

【答案】(1);(2)定點

【解析】

(1)由題意列式關(guān)于ab,c的方程組,求解可得ab的值,則橢圓C的方程可求;

(2)設(shè)直線PA的斜率為k,則PB的斜率為﹣k,PA的直線方程為y3kx2)將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用弦長公式即可求得x1+2,同理PB的直線方程為y3=﹣kx2),可得x2+2,從而得出AB的斜率為定值.

解:(1)由題意可得,解得a4,b,c2

∴橢圓C的方程為

(2)設(shè)Ax1,y1),Bx2,y2),

當∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,

PB的斜率為﹣k,直線PA的直線方程為y3kx2),

聯(lián)立,得(3+4k2x2+8k32kx+432k2480

同理直線PB的直線方程為y3=﹣kx2),

可得

,

,

AB的斜率為定值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲烷分子由一個碳原子和四個氫原子組成,其空間構(gòu)型為一個各條棱都相等的四面體,四個氫原子分別位于該四面體的四個頂點上,碳原子位于該四面體的中心,它與每個氫原子的距離都是,若將碳原子和氫原子均視為一個點,則任意兩個氫原子之間的距離為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l13xy10,l2x2y50,l3xay30不能圍成三角形,則實數(shù)a的取值可能為(

A.1B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.

I)將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.

II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?

非手機迷

手機迷

合計

合計

附:隨機變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù),當時,若的唯一極值點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1)用莖葉圖表示這兩組數(shù)據(jù);

2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(平均數(shù)、方差)考慮,你認為選派哪位同學參加合適?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則以下結(jié)論正確的是(

A.函數(shù)的單調(diào)減區(qū)間是

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),,且,若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時間的統(tǒng)計數(shù)據(jù)好下表:

超過1小時

不超過1小時

20

8

12

m

(Ⅰ)求;

(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?

(Ⅲ)以樣本中學生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務(wù)時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案