【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1)用莖葉圖表示這兩組數(shù)據(jù);

2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(平均數(shù)、方差)考慮,你認為選派哪位同學參加合適?請說明理由

【答案】1)答案見解析;(2派甲參賽比較合適.

【解析】

1根據(jù)所給的數(shù)據(jù),以十位做莖,個位做葉,做出莖葉圖;

2根據(jù)所給的數(shù)據(jù)做出兩個人的平均數(shù)和方差,把平均數(shù)和方差進行比較,得到兩個人的平均數(shù)相等,但是乙的方差大于甲的方差,得到要派甲參加.

1作出莖葉圖如圖:

(2)派甲參賽比較合適.

3理由如下:78+79+81+82+84+88+93+95)=85

75+80+80+83+85+90+92+95)=85,

[78852+79852+81852+82852+84852+88852+93852+95852]35.5

[75852+80852+80852+83852+85852+90852+92852+95852]41,

,,

∴甲的成績較穩(wěn)定,派甲參賽比較合適.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是邊長為的菱形,.

(1)證明:平面;

(2)若求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】五一勞動節(jié)放假,某商場進行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍、紫的小球各2個,分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機變量的概率分布和數(shù)學期望;

(3)求某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 離心率等于,是橢圓上的兩點.

(1)求橢圓的方程;

(2)是橢圓上位于直線兩側(cè)的動點.當運動時,滿足,試問直線的斜率是否為定值?如果為定值,請求出此定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人做游戲,下列游戲不公平的是(

A.拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B.甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

C.從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D.同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線,圓的圓心為,且經(jīng)過點

1)求圓的方程;

2)若圓與圓關(guān)于直線對稱,點分別為圓,上任意一點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有四個不相等的實數(shù)根,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案