【題目】如圖,在三棱錐中,分別為棱的中點.已知,.
求證:(1)直線PA平面DEF;
(2)平面BDE⊥平面ABC.
【答案】(1)見解析(2)見解析
【解析】
試題分析:(1) 由線面平行的判定定理可知,只須證PA與平面DEF內(nèi)的某一條直線平行即可,由已知及圖形可知應(yīng)選擇DE,由三角形的中位線的性質(zhì)易知: DE∥PA ,從而問題得證;注意線PA在平面DEG外,而DE在平面DEF內(nèi)必須寫清楚;(2) 由面面垂直的判定定理可知,只須證兩平中的某一直線與另一個平面垂直即可,注意題中已知了線段的長度,那就要注意利用勾股定理的逆定理來證明直線與直線的垂直;通過觀察可知:應(yīng)選擇證DE垂直平面ABC較好,由(1)可知:DE⊥AC,再就只須證DE⊥EF即可;這樣就能得到DE⊥平面ABC,又DE平面BDE,從面而有平面BDE⊥平面ABC.
試題解析:(1)因為D,E分別為PC,AC的中點,所以DE∥PA.
又因為PA平面DEF,DE平面DEF,所以直線PA∥平面DEF.
(2)因為D,E,F分別人棱PC,AC,AB的中點,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.
又因為DF=5,故DF2=DE2+EF2,所以∠DEF=90。,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.
因為AC∩EF=E,AC平面ABC,EF平面ABC,所以DE⊥平面ABC.
又DE平面BDE,所以平面BDE⊥平面ABC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體中,,,,分別是,,,的中點.
(Ⅰ)求證:,,,四點共面;
(Ⅱ)求證:平面∥平面;
(Ⅲ)畫出平面與正方體側(cè)面的交線(需要有必要的作圖說明、保留作圖痕跡).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,動圓過點和點.記兩個圓的交點為、.
(1)如果直線的方程為,求圓的方程;
(2)當(dāng)動圓的面積最小時,求兩個圓心距離的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角所對的邊分別為,滿足.
(1)求的大;
(2)如圖,,在直線的右側(cè)取點,使得.當(dāng)角為何值時,四邊形面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600件.
(1)設(shè)一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;
(2)當(dāng)銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.
(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com