【題目】若數(shù)列{an}和{bn}的項數(shù)均為n,則將 定義為數(shù)列{an}和{bn}的距離.
(1)已知 ,bn=2n+1,n∈N* , 求數(shù)列{an}和{bn}的距離dn
(2)記A為滿足遞推關系 的所有數(shù)列{an}的集合,數(shù)列{bn}和{cn}為A中的兩個元素,且項數(shù)均為n.若b1=2,c1=3,數(shù)列{bn}和{cn}的距離大于2017,求n的最小值.
(3)若存在常數(shù)M>0,對任意的n∈N* , 恒有 則稱數(shù)列{an}和{bn}的距離是有界的.若{an}與{an+1}的距離是有界的,求證: 的距離是有界的.

【答案】
(1)解:數(shù)列{an}和{bn}的前n項和分別為2n+1﹣2,n2+2n,

∴dn= =|2n+1﹣2﹣n2﹣2n|,

當n=1,21+1﹣2﹣12﹣2×1=﹣1

當n=2時,22+1﹣2﹣22﹣2×2=﹣2

當n=3時,23+1﹣2﹣32﹣2×3=﹣1

當n=4時,24+1﹣2﹣42﹣2×4=6,

∴dn= =|2n+1﹣2﹣n2﹣2n|=


(2)解:設a1=p,其中p≠0,且p≠±1,由 ,

∴a2= ,a3=﹣ ,a4= ,a5=p,

∴a1=a5,

因此A中數(shù)列的項周期性重復,且間隔4項重復一次,

數(shù)列{bn}中, ,

數(shù)列{cn}中,

∴項數(shù)n越大,數(shù)列{bn}和{cn}的距離越大.

= ,|c1﹣b1|=1,|c2﹣b2|=1

因此,當n=3457時, ,當n=3458時, ,

故n的最小值為3458


(3)證明:∵{an}與{an+1}的距離是有界的,

∴存在正數(shù)M,對任意的n∈N*,有|an﹣an1|+|an1+an2|+…+|a2﹣a1|≤M,

∵|an|=|an﹣an1+an1+an2+…+a2﹣a1+a1|≤|an﹣an1|+|an1+an2|+…+|a2﹣a1|+|a1|≤|M+|a1|,

記|≤|M+|a1|,則有|an+12﹣an2|=|(an+1﹣an)(an+1+an)|≤|an+1﹣an|(|an+1|+|an|)≤2K|an+1﹣an|,

∴|an+12﹣an2|+|an2﹣an12|+…+|a22﹣a12|≤2KM,

的距離是有界的


【解析】(1)數(shù)列{an}和{bn}的前n項和分別為2n+1﹣2,n2+2n,根據(jù)新定義求出即可;(2)由數(shù)列的遞推公式,即可求得a2 , a3 , a4 , a5 , 求得A中數(shù)列的項周期性重復,且間隔4項重復一次,求得數(shù)列{bn}和{cn}規(guī)律,可知隨著項數(shù)n越大,數(shù)列{bn}和{cn}的距離越大,由 ,根據(jù)周期的定義,求得n的最大值;(3)根據(jù)新定義結合絕對值不等式,即可證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)若函數(shù)f(x)的值域為[2,+∞),求實數(shù)a的值
(2)若f(2﹣a)≥f(2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,側面ABD,ACD是全等的直角三角形,AD是公共的斜邊且AD= ,BD=CD=1,另一側面ABC是正三角形.
(1)求證:AD⊥BC;
(2)若在線段AC上存在一點E,使ED與平面BCD成30°角,試求二面角A﹣BD﹣E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(已知函數(shù)f(x)=|2x+1|+|x﹣2|,不等式f(x)≤2的解集為M.
(1)求M;
(2)記集合M的最大元素為m,若正數(shù)a,b,c滿足abc=m, 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α,β都是銳角,且sinα= ,tan(α﹣β)=﹣
(1)求sin(α﹣β)的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構思提出后, 某科技企業(yè)為抓住一帶一路帶來的機遇, 決定開發(fā)生產一款大型電子設備, 生產這種設備的年固定成本為萬元, 每生產臺,需另投入成本(萬元), 當年產量不足臺時, (萬元); 當年產量不小于臺時 (萬元), 若每臺設備售價為萬元, 通過市場分析,該企業(yè)生產的電子設能全部.

(1)求年利潤 (萬元)年產(臺)的函數(shù)關系式;

(2)年產為多少臺時 ,該企業(yè)在這一電子設的生產中所獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經突破9.27億,為調查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:

微信群數(shù)量(個)

頻數(shù)

頻率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知D= ,給出下列四個命題:
P1(x,y)∈D,x+y+1≥0;
P2(x,y)∈D,2x﹣y+2≤0;
P3(x,y)∈D, ≤﹣4;
P4(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(2015·新課標Ⅱ)設函數(shù)f(x)是奇函數(shù)f(x)(xR)的導函數(shù),f(-1)=0,當x0時,xf'(x)-f(x)0,則使得f(x)0成立的x的取值范圍是()


A.(-,-1)(0,1)
B.(-1,0)(1,+
C.(-,-1)(-1,0)
D.(0,1)(1,+

查看答案和解析>>

同步練習冊答案