【題目】如圖,ABCD﹣A1B1C1D1為正方體,則以下結(jié)論:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
【答案】D
【解析】
①由正方體的性質(zhì)得BD∥,所以結(jié)合線面平行的判定定理可得答案;
②由正方體的性質(zhì)得AC⊥BD,,⊥BD,再利用線面垂直可得答案.
③由正方體的性質(zhì)得BD∥,并且結(jié)合②可得⊥,同理可得,進而結(jié)合線面垂直的判定定理得到答案.
解:由正方體的性質(zhì)得BD∥,所以結(jié)合線面平行的判定定理可得:BD∥平面;所以①正確.
由正方體的性質(zhì)得AC⊥BD,⊥BD,可得⊥平面,所以⊥BD,所以②正確.
由正方體的性質(zhì)得BD∥,由②可得⊥BD,所以⊥,同理可得,進而結(jié)合線面垂直的判定定理得到:⊥平面,所以③正確.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】港珠澳大橋于2018年10月24日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米,橋面為雙向六車道高速公路,大橋通行限速100 km/h. 現(xiàn)對大橋某路段上汽車行駛速度進行抽樣調(diào)查,畫出頻率分布直方圖(如圖).根據(jù)直方圖估計在此路段上汽車行駛速度的眾數(shù)和行駛速度超過90 km/h的概率分別為
A. , B. ,
C. , D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標中,設(shè)橢圓:的左右兩個焦點分別為,,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.
(1)求橢圓的方程;
(2)已知,經(jīng)過點且斜率為,直線與橢圓有兩個不同的和交點,請問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】哈三中群力校區(qū)高二、六班同學用隨機抽樣的辦法對所在校區(qū)老師的飲食習慣進行了一次調(diào)查, 飲食指數(shù)結(jié)果用莖葉圖表示如圖, 圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.
(1)完成下列列聯(lián)表:
能否有的把握認為老師的飲食習慣與年齡有關(guān)?
(2)從調(diào)查的結(jié)果中飲食指數(shù)在的老師內(nèi)任選3名老師, 設(shè)“選到的三位老師飲食指數(shù)之和不超過105”為事件, 求事件發(fā)生的概率;
(3)為了給食堂提供老師的飲食信息, 根據(jù)(1)的結(jié)論,能否有更好的抽樣方法來估計老師的飲食習慣, 并說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某賽季甲、乙兩名籃球運動員每場比賽得分的原始記錄如下:
甲運動員得分:13,51,23,8,26,38,16,33,14,28,39;
乙運動員得分:49,24,12,31,50,31,44,36,15,37,25,36,39.
(1)用十位數(shù)為莖,在答題卡中畫出原始數(shù)據(jù)的莖葉圖;
(2)用分層抽樣的方法在乙運動員得分十位數(shù)為 2,3,4 的比賽中抽取一個容量為 5 的樣本,從該樣本中隨機抽取 2 場,求其中恰有 1 場得分大于 40 分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com