【題目】已知函數(shù)在區(qū)間上有最大值3和最小值.

(1)求實(shí)數(shù)的值;

(2)設(shè),若不等式上恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) .(2) .

【解析】試題分析:1根據(jù)二次函數(shù)的性質(zhì)求出的單調(diào)區(qū)間,求出函數(shù)的最大值和最小值,得到關(guān)于的方程組,解出即可;2問題轉(zhuǎn)化為 ,令,根據(jù)函數(shù)的單調(diào)性求出的最小值,求出的范圍即.

試題解析:(1)∵的對(duì)稱軸是,又∵.

上單調(diào)遞減,在上單調(diào)遞增;

∴當(dāng)時(shí), 取最小值,當(dāng)時(shí), 取最大值3;

,解得.

(2)∵,

,

,∴,

,則上是增函數(shù),

,

上恒成立時(shí), .

【方法點(diǎn)晴】本題主要考查二次函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ① 求得 的范圍的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為1, 分別是棱, 的中點(diǎn),過直線的平面分別與棱, 交于, ,設(shè), ,給出以下命題:

①四邊形為平行四邊形;

②若四邊形面積, ,則有最小值;

③若四棱錐的體積, ,則為常函數(shù);

④若多面體的體積 ,則為單調(diào)函數(shù).

⑤當(dāng)時(shí),四邊形為正方形.

其中假命題的個(gè)數(shù)為( )

A. 0 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張師傅想要一個(gè)如圖1所示的鋼筋支架的組合體,來(lái)到一家鋼制品加工店定制,拿出自己畫的組合體三視圖(如圖2所示).店老板看了三視圖,報(bào)了最低價(jià),張師傅覺得很便宜,當(dāng)即甩下定金和三視圖,約定第二天提貨.第二天提貨時(shí),店老板一臉壞笑的捧出如圖3–1所示的組合體,張師傅一看,臉都綠了:“奸商,怎能如此偷工減料”.店老板說,我是按你的三視圖做的,要不我給你加一個(gè)正方體,但要加價(jià),隨機(jī)加上了一個(gè)正方體,得到如圖3–2所示的組合體;張師傅臉還是綠的,店老板又加上一個(gè)正方體,組成了如圖 3–3 所示的組合體,又加價(jià);張師傅臉繼續(xù)綠,店老板再加一個(gè)正方體,組成如圖 3–4 所示的組合體,再次加價(jià);雙方就三視圖爭(zhēng)吵不休……

你認(rèn)為店老板提供的個(gè)組合體的三視圖與張師傅畫的三視圖一致的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位實(shí)行休年假制度三年以來(lái),50名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如下表所示:

休假次數(shù)

0

1

2

3

人數(shù)

5

10

20

15

根據(jù)表中信息解答以下問題:

(1)從該單位任選兩名職工,求這兩人休年假次數(shù)之和為4的概率;

(2)從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣污染,又稱為大氣污染,是指由于人類活動(dòng)或自然過程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時(shí)間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來(lái)越關(guān)注環(huán)境保護(hù)問題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時(shí),空氣質(zhì)量級(jí)別為一級(jí),空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時(shí),空氣質(zhì)量級(jí)別為二級(jí),空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時(shí),空氣質(zhì)量級(jí)別為三級(jí),空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時(shí),空氣質(zhì)量級(jí)別為四級(jí),空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時(shí),空氣質(zhì)量級(jí)別為五級(jí),空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時(shí),空氣質(zhì)量級(jí)別為六級(jí),空氣質(zhì)量狀況屬于嚴(yán)重污染.20171月某日某省x個(gè)監(jiān)測(cè)點(diǎn)數(shù)據(jù)統(tǒng)計(jì)如下:

空氣污染指數(shù)

(單位:μg/m3

監(jiān)測(cè)點(diǎn)個(gè)數(shù)

15

40

y

10

1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;

(2)若A市共有5個(gè)監(jiān)測(cè)點(diǎn),其中有3個(gè)監(jiān)測(cè)點(diǎn)為輕度污染,2個(gè)監(jiān)測(cè)點(diǎn)為良.從中任意選取2個(gè)監(jiān)測(cè)點(diǎn),事件A“其中至少有一個(gè)為良”發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),橢圓的離心率為是橢圓的焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩個(gè)班級(jí)某次考試的數(shù)學(xué)成績(jī)(單位:分),從甲、乙兩個(gè)班級(jí)中分別隨機(jī)抽取5名學(xué)生的成績(jī)作樣本,如圖是樣本的莖葉圖.規(guī)定:成績(jī)不低于120分時(shí)為優(yōu)秀成績(jī).

(1)從甲班的樣本中有放回的隨機(jī)抽取 2 個(gè)數(shù)據(jù),求其中只有一個(gè)優(yōu)秀成績(jī)的概率;

(2)從甲、乙兩個(gè)班級(jí)的樣本中分別抽取2名同學(xué)的成績(jī),記獲優(yōu)秀成績(jī)的人數(shù)為 ,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有5名男志愿和3名女志愿者,從中隨機(jī)抽取4人接受甲種心理暗示,另4人接受乙種心理暗示.

(1)求接受甲種心理暗示的志愿者中包含但不包含的頻率.

(2)用表示接受乙種心理暗示的女志愿者人數(shù),求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某物體一天中的溫度是時(shí)間的函數(shù),已知,其中溫度的單位是,時(shí)間的單位是小時(shí),規(guī)定中午12:00相應(yīng)的,中午12:00以后相應(yīng)的取正數(shù),中午12:00以前相應(yīng)的取負(fù)數(shù)(例如早上8:00相應(yīng)的,下午16:00相應(yīng)的),若測(cè)得該物體在中午12:00的溫度為,在下午13:00的溫度為,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.

(1)求該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;

(2)該物體在上午10:00至下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案