【題目】已知、為橢圓()和雙曲線的公共頂點(diǎn),、分為雙曲線和橢圓上不同于、的動(dòng)點(diǎn),且滿足,設(shè)直線、、、的斜率分別為、、、.
(1)求證:點(diǎn)、、三點(diǎn)共線;
(2)求的值;
(3)若、分別為橢圓和雙曲線的右焦點(diǎn),且,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若曲線在點(diǎn)處的切線與軸垂直,求實(shí)數(shù)的值;
(2)若在處取得極大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)試討論函數(shù)的單調(diào)性;
(2)若使得都有恒成立,且,求滿足條件的實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線經(jīng)過(guò)點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過(guò)原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;
(3)若過(guò)雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為平面直角坐標(biāo)系xOy中的點(diǎn)集,從中的任意一點(diǎn)P作x軸、y軸的垂線,垂足分別為M,N,記點(diǎn)M的橫坐標(biāo)的最大值與最小值之差為x(),點(diǎn)N的縱坐標(biāo)的最大值與最小值之差為y().若是邊長(zhǎng)為1的正方形,給出下列三個(gè)結(jié)論:
①x(Q)的最大值為
②x(Q)+y(Q)的取值范圍是
③x(Q)-y(Q)恒等于0.
其中所有正確結(jié)論的序號(hào)是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(2)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,證明:
(Ⅰ);
(Ⅱ)對(duì)一切成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)( )
A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變
B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變
D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com