【題目】已知在正項數(shù)列中,首項,點在雙曲線上,數(shù)列中,點在直線上,其中是數(shù)列的前項和.
(1)求數(shù)列、的通項公式;
(2)若,求證: 數(shù)列為遞減數(shù)列.
【答案】(1);(2)見解析
【解析】
(1)由題意可得﹣=1,即數(shù)列{}是等差數(shù)列,同樣Tnbn+1,利用兩式作差即可得到的通項公式;
(2)根據(jù)(1)求得{an}的通項公式和數(shù)列{bn}的通項公式,進而可得{cn}的通項公式,進而可得cn+1﹣cn的表達式,根據(jù)表達式小于零,原式得證.
解:(1)由已知點An(,)在曲線y2﹣x2=1上知﹣=1.
所以數(shù)列{}是一個以2為首項,公差為1的等差數(shù)列,
所以=+(n﹣1)d=2+n﹣1=n+1,
點(bn,Tn)在直線yx+1上,所以Tnbn+1①
Tn﹣1bn﹣1+1②
兩式相減得bnbnbn﹣1
∴bnbn﹣1
令n=1得b1b1+1所以b1.
所以數(shù)列{bn}是以為首項,以為公比的等比數(shù)列,
所以bn()n﹣1;
(2)證明:cn=anbn=(n+1),
所以cn+1﹣cn=(n+2)(n+1)
[(n+2)﹣3(n+1)]
(n+2﹣3n﹣3)
(﹣2n﹣1)<0
故cn+1<cn.
∴數(shù)列為遞減數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結(jié)論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,,,為邊的中點,沿將折起使得平面平面.
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)求折后直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線:與橢圓相交于不同的兩點,,,若(為坐標(biāo)原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點,與關(guān)于拋物線的對稱軸對稱,斜率為1的直線交拋物線于、兩點,且、在直線兩側(cè).
(1)求證:平分;
(2)點為拋物線在、處切線的交點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標(biāo)原點).
(1)求的方程.
(2)直線經(jīng)過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于兩點,若點的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,為實數(shù)).
(1)若為偶函數(shù),求實數(shù)的值;
(2)設(shè),求函數(shù)的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若是的中點,過點作球的截面,則截面面積的最小值是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com