【題目】已知拋物線上一點(diǎn),關(guān)于拋物線的對(duì)稱軸對(duì)稱,斜率為1的直線交拋物線于兩點(diǎn),且在直線兩側(cè).

1)求證:平分

2)點(diǎn)為拋物線在、處切線的交點(diǎn),若,求直線的方程.

【答案】1)證明見解析;(2

【解析】

1)要證平分,只需證直線傾斜角互補(bǔ),只需證斜率和為0,設(shè)直線方程,與拋物線方程聯(lián)立,運(yùn)用韋達(dá)定理,即可求證;

2方程化為,求導(dǎo),求出拋物線在、處切線的斜率,繼而求出切線方程,聯(lián)立兩切線方程,求出點(diǎn)坐標(biāo),,到直線距離相等,即可求出直線的方程.

1關(guān)于拋物線的對(duì)稱軸對(duì)稱,

設(shè)直線的方程為

聯(lián)立,消去得,,

設(shè)

=,

直線傾斜角互補(bǔ),軸,

,平分;

(2)拋物線,,

點(diǎn)處的切線方程為,①

同理在點(diǎn)處的切線方程為,

由①②得, ,

到直線的距離相等,

由點(diǎn)到直線的距離公式得:

,

所求的直線方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位已知直線l的參數(shù)方程為(為參數(shù),),拋物線C的普通方程為.

(1)求拋物線C的準(zhǔn)線的極坐標(biāo)方程;

(2)設(shè)直線l與拋物線C相交于A,B兩點(diǎn),求的最小值及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,OAOB、OC所在直線兩兩垂直,且,CA與平面AOB所成角為,DAB中點(diǎn),三棱錐的體積是

1)求三棱錐的高;

2)在線段CA上取一點(diǎn)E,當(dāng)E在什么位置時(shí),異面直線BEOD所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對(duì)任意的恒成立,請(qǐng)求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)已知函數(shù)時(shí)總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正項(xiàng)數(shù)列中,首項(xiàng),點(diǎn)在雙曲線上,數(shù)列中,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求證: 數(shù)列為遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若對(duì)任意,恒成立,求的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù)滿足:對(duì)于任意實(shí)數(shù)x、y,總有恒成立,我們稱類余弦型函數(shù).

已知類余弦型函數(shù),且,求的值;

的條件下,定義數(shù)列2,3的值.

類余弦型函數(shù),且對(duì)于任意非零實(shí)數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù),滿足,判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).

(1)求的方程.

(2)直線經(jīng)過的焦點(diǎn)不與軸垂直,交于兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),試問在軸上是否存在點(diǎn),使為定值?若存在,求該定值及的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案