【題目】如圖,在三棱柱ABC﹣A1B1C1中,點D是A1B的中點,點E是B1C1的中點.
(1)求證:DE∥平面ACC1A1;
(2)若△ABC的面積為,三棱柱ABC﹣A1B1C1的高為3,求三棱錐D﹣BCE的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的新能源產(chǎn)品上市后在國內(nèi)外同時銷售,已知第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對這批產(chǎn)品上市后的國內(nèi)外市場銷售情況進行了跟蹤調(diào)查,如圖所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關(guān)系;圖②中的拋物線表示的是國內(nèi)市場的日銷售量與上市時間的關(guān)系;下表表示的是產(chǎn)品廣告費用、產(chǎn)品成本、產(chǎn)品銷售價格與上市時間的關(guān)系.
圖① 圖②
第t天產(chǎn)品廣告費用(單位:萬元) | 每件產(chǎn)品成本(單位:萬元) | 每件產(chǎn)品銷售價格(單位:萬元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分別寫出國外市場的日銷售量、國內(nèi)市場的日銷售量與產(chǎn)品上市時間t的函數(shù)關(guān)系式;
(2)產(chǎn)品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?
(日銷售利潤=(單件產(chǎn)品銷售價-單件產(chǎn)品成本)×日銷售量-當(dāng)天廣告費用,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某旅行社為吸引游客去某風(fēng)景區(qū)旅游,推出如下收費標(biāo)準(zhǔn):若旅行團人數(shù)不超過30,則每位游客需交費用600元;若旅行團人數(shù)超過30,則游客每多1人,每人交費額減少10元,直到達到70人為止.
(1)寫出旅行團每人需交費用(單位:元)與旅行團人數(shù)之間的函數(shù)關(guān)系式;
(2)旅行團人數(shù)為多少時,旅行社可以從該旅行團獲得最大收入?最大收入是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且焦點在軸上、短半軸長為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點、關(guān)于直線對稱,求實數(shù)的取值范圍;
(3)如圖:直線與兩個“相似橢圓”和分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使和組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對一塊邊長8米的正方形場地ABCD進行改造,點E為線段BC的中點,點F在線段CD或AD上(異于A,C),設(shè)(米),的面積記為(平方米),其余部分面積記為(平方米).
(1)當(dāng)(米)時,求的值;
(2)求函數(shù)的最大值;
(3)該場地中部分改造費用為(萬元),其余部分改造費用為(萬元),記總的改造費用為W(萬元),求W取最小值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點為,底面圓心為,母線長為,,、是底面半徑,且:,為線段的中點,為線段的中點,如圖所示:
(1)求圓錐的表面積;
(2)求異面直線和所成的角的大小,并求、兩點在圓錐側(cè)面上的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,且與軸、軸都交于正半軸,當(dāng)直線與坐標(biāo)軸圍成的三角形面積取得最小值時,求:
(1)直線的方程;
(2)直線l關(guān)于直線m:y=2x-1對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓:.
(Ⅰ)設(shè)直線被圓所截得的弦的中點為,判斷點與圓的位置關(guān)系;
(Ⅱ)設(shè)圓被圓截得的一段圓。ㄔ趫A內(nèi)部,含端點)為,若直線:與圓弧只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com