【題目】已知直線過點,且與軸、軸都交于正半軸,當直線與坐標軸圍成的三角形面積取得最小值時,求:
(1)直線的方程;
(2)直線l關于直線m:y=2x-1對稱的直線方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,點D是A1B的中點,點E是B1C1的中點.
(1)求證:DE∥平面ACC1A1;
(2)若△ABC的面積為,三棱柱ABC﹣A1B1C1的高為3,求三棱錐D﹣BCE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:關于直線對稱且過點和,直線的方程為:.
(1)證明:直線與圓相交;
(2)記直線與圓的兩個交點為,.
①若弦長,求實數(shù)的值;
②求面積的最大值及面積的最大時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解兒子身高與其父親身高的關系,隨機調查了5對父子的身高,統(tǒng)計數(shù)據(jù)如下表所示.
(1)從這五對父子任意選取兩對,用編號表示出所有可能取得的結果,并求隨機事件M“兩對父子中兒子的身高都不低于父親的身高”發(fā)生的概率;
(2)由表中數(shù)據(jù),利用“最小二乘法”求關于的回歸直線的方程.
參考公式:,;回歸直線:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形為矩形, 平面, .
(1)求證: ;
(2)若直線平面,試判斷直線與平面的位置關系,并說明理由;
(3)若, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于的不等式有且僅有兩個正整數(shù)解(其中e=2.71828… 為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )
A. (,] B. (,] C. [,) D. [,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com