【題目】已知圓錐的頂點(diǎn)為,底面圓心為,母線長為,是底面半徑,且:,為線段的中點(diǎn),為線段的中點(diǎn),如圖所示:

1)求圓錐的表面積;

2)求異面直線所成的角的大小,并求兩點(diǎn)在圓錐側(cè)面上的最短距離.

【答案】(1);(2)夾角為,最短距離為

【解析】

1)由求得底面圓半徑,根據(jù)圓錐表面積公式可求得結(jié)果;

2)作,根據(jù)異面直線所成角定義可知所成角為;根據(jù)向量數(shù)量積為零可知,進(jìn)而得到,根據(jù)線面垂直性質(zhì)知,得到線面垂直關(guān)系平面,由線面垂直性質(zhì)得,根據(jù)長度關(guān)系可求得,進(jìn)而求得異面直線所成角;求得圓錐側(cè)面展開圖圓心角后,根據(jù)弧長關(guān)系可求得,由余弦定理可求得結(jié)果.

1)由題意得:底面圓半徑

圓錐表面積

2)作,交,連接

異面直線所成角即為所成角,即

,又

平面平面

平面 平面

平面

中點(diǎn), 中點(diǎn)

,

即異面直線所成角大小為

得:,即圓錐側(cè)面展開圖扇形圓心角為

圓錐側(cè)面展開圖如下圖所示:

中點(diǎn)

中,由余弦定理可得:

,即兩點(diǎn)在圓錐側(cè)面上的最短距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪按逆時(shí)針方向作勻速運(yùn)動(dòng),且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).

(1)試確定點(diǎn)距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時(shí)間(單位:)的函數(shù)關(guān)系式;

(2)在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有多長時(shí)間點(diǎn)距離地面超過?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)與點(diǎn)在直線的兩側(cè),給出以下結(jié)論:① ;② 當(dāng)時(shí),有最小值,無最大值;③ ;④ 當(dāng)時(shí),的取值范圍是;正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,點(diǎn)D是A1B的中點(diǎn),點(diǎn)E是B1C1的中點(diǎn).

(1)求證:DE∥平面ACC1A1;

(2)若△ABC的面積為,三棱柱ABC﹣A1B1C1的高為3,求三棱錐D﹣BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù) 滿足:,且 其中 ,則以向量 為法向量的直線的傾斜角的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解兒子身高與其父親身高的關(guān)系,隨機(jī)調(diào)查了5對父子的身高,統(tǒng)計(jì)數(shù)據(jù)如下表所示.

1)從這五對父子任意選取兩對,用編號表示出所有可能取得的結(jié)果,并求隨機(jī)事件M兩對父子中兒子的身高都不低于父親的身高發(fā)生的概率;

2)由表中數(shù)據(jù),利用最小二乘法關(guān)于的回歸直線的方程.

參考公式:;回歸直線:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)討論的單調(diào)性;

2)設(shè),若的最大值為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案