【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質(zhì)花苗.
(1)用樣本估計(jì)總體,以頻率作為概率,若在兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
【答案】(1)分布列見解析,;(2)列聯(lián)表見解析;有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系.
【解析】
(1)根據(jù)題意,可知.由獨(dú)立重復(fù)試驗(yàn)概率求法依次求得各組概率,即可得分布列;由數(shù)學(xué)期望公式即可求解.
(2)求得優(yōu)質(zhì)花苗的數(shù)量,填寫列聯(lián)表.由列聯(lián)表求得值,與臨界值比較即可判斷.
(1)由頻率分布直方圖可知,優(yōu)質(zhì)花苗的頻率為,即概率為.
設(shè)所抽取的花苗為優(yōu)質(zhì)花苗的株數(shù)為,則,于是
;
;
;
.
其分布列為:
0 | 1 | 2 | 3 | |
所以,所抽取的花苗為優(yōu)質(zhì)花苗的數(shù)學(xué)期望
(2)頻率分布直方圖,優(yōu)質(zhì)花苗的頻率為,則樣本中優(yōu)質(zhì)花苗的株數(shù)為60株,列聯(lián)表如下表所示:
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | 30 | 50 |
乙培育法 | 40 | 10 | 50 |
合計(jì) | 60 | 40 | 100 |
可得.
所以,有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)討論的單調(diào)區(qū)間
(2)當(dāng)時(shí),存在,使得對任意均有,求實(shí)數(shù)M的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若,點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱的軸截面是邊長為2的正方形,點(diǎn)P是圓弧上的一動點(diǎn)(不與重合),點(diǎn)Q是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)P在平面上的射影為點(diǎn)O,點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問題.
(i)證明:平面;
(ii)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值,并估計(jì)該品種花苗綜合評分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等;
B.為調(diào)查高三年級的240名學(xué)生完成作業(yè)所需的時(shí)間,由教務(wù)處對高三年級的學(xué)生進(jìn)行編號,從001到240抽取學(xué)號最后一位為3的學(xué)生進(jìn)行調(diào)查,則這種抽樣方法為分層抽樣;
C.“”是“”的必要不充分條件;
D.命題:“,使得”的否定為:“,均有”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月18日,國務(wù)院辦公廳發(fā)布了《生活垃圾分類制度實(shí)施方案》,我市環(huán)保部門組織了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民都可以通過電腦網(wǎng)絡(luò)或手機(jī)微信平臺參與,但僅有一次參加機(jī)會工作人員通過隨機(jī)抽樣,得到參與網(wǎng)絡(luò)問卷調(diào)查的100人的得分(滿分按100分計(jì))數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表.
組別 | ||||||
女 | 2 | 4 | 4 | 15 | 21 | 9 |
男 | 1 | 4 | 10 | 10 | 12 | 8 |
(1)環(huán)保部門規(guī)定:問卷得分不低于70分的市民被稱為“環(huán)保關(guān)注者”.請列出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.現(xiàn)在從本次調(diào)查的“環(huán)保達(dá)人”中利用分層抽樣的方法隨機(jī)抽取5名市民參與環(huán)保知識問答,再從這5名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率.
附表及公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2013年以來,“一帶一路”建設(shè)成果顯著.下圖是2013-2017年,我國對“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計(jì)圖.下列描述錯(cuò)誤的是( )
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com