已知函數(shù)f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
滿足對任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,則實(shí)數(shù)a的取值范圍是(  )
分析:由題意可知,0<a<1,且a-3<0,且4a≤1,解之即得答案.
解答:解:∵f(x)=
ax(x<0)
(a-3)x+4a(x≥0)
,對任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,
∴函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,令g(x)=ax,依題意,f(0)≤g(0),即4a≤1,
0<a<1
a-3<0
4a≤1
,解得0<a≤
1
4

∴實(shí)數(shù)a的取值范圍是0<a≤
1
4

故選C.
點(diǎn)評:本題考查函數(shù)單調(diào)性的性質(zhì)及其應(yīng)用,理解“對任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立?函數(shù)f(x)在定義域內(nèi)單調(diào)遞減”是關(guān)鍵,也是難點(diǎn)所在,考查解不等式組的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案