【題目】如圖所示,等腰梯形中,,,,為中點(diǎn),與交于點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).
(1)證明:平面平面;
(2)若,試判斷線段上是否存在一點(diǎn)(不含端點(diǎn)),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由.
【答案】(1)證明見解析(2)存在,
【解析】
(1)先利用線面垂直的判定定理證明平面,再利用面面垂直證明面平面即可;
(2)建立空間直角坐標(biāo)系求出平面的法向量,再利用向量所成角的關(guān)系式求出直線與平面所成角的正弦值,建立關(guān)系式,即可得出的值.
(1)證明:連接,在等腰梯形中,,,為中點(diǎn),
∴四邊形為菱形,∴,
∴,,即,,且,
平面,平面,∴平面.
又平面,∴平面平面.
(2)由(1)可知四邊形為菱形,∴,
在等腰梯形中,∴正三角形,
∴,同理,
∵,∴,∴.
由(1)可知,,
以為原點(diǎn),,,分別為軸,軸,為軸,建立空間直角坐標(biāo)系,
由題意得,各點(diǎn)坐標(biāo)為,,,,,
∴,,,
設(shè),,
設(shè)平面的一個法向量為,
則,即,
取,,得,∴,
設(shè)直線與平面所成角為,,
則,即,
化簡得:,解得,
∴存在點(diǎn)為的中點(diǎn)時,使直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:{an}是公比大于1的等比數(shù)列,Sn為其前n項和,S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2a3n+1,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù)).
(1)當(dāng)時,求曲線在處的切線方程;
(2)若函數(shù)在內(nèi)存在唯一極值點(diǎn),求實(shí)數(shù)的取值范圍,并判斷是在內(nèi)的極大值點(diǎn)還是極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)?/span>{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f﹣1(x),且f﹣1(x)與f(x)不完全相同,則f(x)與f﹣1(x)圖象的公共點(diǎn)必在直線y=x上;
其中真命題的序號是 .(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,…,為1,2,…,10的一個排列,則滿足對任意正整數(shù)m,n,且,都有成立的不同排列的個數(shù)為( )
A.512B.256C.255D.64
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校運(yùn)動會男生組田徑綜合賽以選手三項運(yùn)動的綜合積分高低決定排名.具體積分規(guī)則如表1所示,某代表隊四名男生的模擬成績?nèi)绫?/span>2.
表1 田徑綜合賽項目及積分規(guī)則
項目 | 積分規(guī)則 |
米跑 | 以秒得分為標(biāo)準(zhǔn),每少秒加分,每多秒扣分 |
跳高 | 以米得分為標(biāo)準(zhǔn),每多米加分,每少米扣分 |
擲實(shí)心球 | 以米得分為標(biāo)準(zhǔn),每多米加分,每少米扣分 |
表2 某隊模擬成績明細(xì)
姓名 | 100米跑(秒) | 跳高(米) | 擲實(shí)心球(米) |
甲 | |||
乙 | |||
丙 | |||
丁 |
根據(jù)模擬成績,該代表隊?wèi)?yīng)選派參賽的隊員是:( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形與均為菱形,設(shè)與相交于點(diǎn),若,且.
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓C的左頂點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),且|AB|=,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點(diǎn),且OP⊥OQ,求實(shí)數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com