【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進行統(tǒng)計,按照、、、的分組作出頻率分布直方圖,已知得分在的頻數(shù)分別為、.

1)求樣本容量和頻率分布直方圖中的、的值;

2)估計本次競賽學(xué)生成績的眾數(shù)、中位數(shù)、平均數(shù).

【答案】1,,;(2)眾數(shù)為,中位數(shù)為,平均數(shù)為.

【解析】

1)由題意先根據(jù)得分在的頻數(shù)求出樣本容量,根據(jù)得分在的頻數(shù)可計算出的值,再根據(jù)直方圖中所有矩形面積之和為可求出的值;

2)根據(jù)最高矩形底邊中點值求出眾數(shù),將矩形底邊的中點值乘以相應(yīng)矩形的面積,再將所得結(jié)果相加可得平均數(shù),設(shè)中位數(shù)為,根據(jù)中位數(shù)左邊的矩形面積之和為列方程可求出的值,即為所求的中位數(shù).

1)由題意可知,樣本容量為,,

;

2)由頻率分布直方圖可知,本次競賽學(xué)生成績的眾數(shù)為,

設(shè)中位數(shù)為,,則,

由題意可得,解得,

即本次競賽學(xué)生成績的中位數(shù)為.

由頻率分布直方圖可知,本次競賽學(xué)生成績的平均數(shù)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點.

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

1)當(dāng)時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場親子游樂場由于經(jīng)營管理不善突然倒閉.在進行資產(chǎn)清算時發(fā)現(xiàn)有3000名客戶辦理的充值會員卡上還有余額.為了了解客戶充值卡上的余額情況,從中抽取了300名客戶的充值卡余額進行統(tǒng)計.其中余額分組區(qū)間為,,,,其頻率分布直方圖如圖所示,請你解答下列問題:

(1)求的值;

(2)求余額不低于元的客戶大約為多少人?

(3)根據(jù)頻率分布直方圖,估計客戶人均損失多少?(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,B為橢圓上任一點,F為橢圓左焦點,已知的最小值與最大值之和為4,且離心率,拋物線的通徑為4

求橢圓和拋物線的方程;

設(shè)坐標(biāo)原點為O,A為直線與已知拋物線在第一象限內(nèi)的交點,且有

試用k表示AB兩點坐標(biāo);

是否存在過AB兩點的直線l,使得線段AB的中點在y軸上?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點為圓心的圓及其上一點.

1)設(shè)圓Ny軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的各項均為正數(shù),其前項和為, .

(1)如果,且對于一切正整數(shù),均有,求

(2)如果對于一切正整數(shù),均有,求;

(3)如果對于一切正整數(shù),均有,證明: 能被8整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, , 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

同步練習(xí)冊答案