【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).
(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn)且,求直線l的方程.
【答案】(1)(2)或.
【解析】
(1)根據(jù)由圓心在直線y=6上,可設(shè),再由圓N與y軸相切,與圓M外切得到圓N的半徑為和得解.
(2)由直線l平行于OA,求得直線l的斜率,設(shè)出直線l的方程,求得圓心M到直線l的距離,再根據(jù)垂徑定理確定等量關(guān)系,求直線方程.
(1)圓M的標(biāo)準(zhǔn)方程為,所以圓心M(7,6),半徑為5,.
由圓N圓心在直線y=6上,可設(shè)
因?yàn)閳AN與y軸相切,與圓M外切
所以,圓N的半徑為
從而
解得.
所以圓N的標(biāo)準(zhǔn)方程為.
(2)因?yàn)橹本l平行于OA,所以直線l的斜率為.
設(shè)直線l的方程為,即
則圓心M到直線l的距離
因?yàn)?/span>
而
所以
解得 或.
故直線l的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進(jìn)行統(tǒng)計(jì),按照、、、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為、.
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測(cè)量體重.經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于到之間,將數(shù)據(jù)分成以下組:第組,第組,第組,第組,第組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第, , 組中隨機(jī)抽取名學(xué)生做初檢.
()求每組抽取的學(xué)生人數(shù).
()若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間?
(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長(zhǎng)度為米,(已有兩面墻的可利用長(zhǎng)度足夠大),記.
(1)若,求的周長(zhǎng)(結(jié)果精確到0.01米);
(2)為了使小動(dòng)物能健康成長(zhǎng),要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com