【題目】(1)求證:正三角形各頂點到其外接圓上任一切線的距離之和為定值;
(2)猜想空間命題“正四面體各頂點到其外接球的任一切面的距離之和為定值”是否成立?證明你的結(jié)論.注:與球只有一個公共點的平面叫做球的切面,這個公共點叫做切點,切點與球心的連線垂直于切面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實數(shù),函數(shù).
(1)若是函數(shù)的一個極值點,求實數(shù)的取值;
(2)設(shè),若,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在時取得極值,求實數(shù)的值;
(2)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市正在創(chuàng)建全國文明城市,某高中為了解學(xué)生的創(chuàng)文知曉率,按分層抽樣的方法從“表演社”、“演講社”、“圍棋社”三個活動小組中隨機抽取了6人進(jìn)行問卷調(diào)查,各活動小組人數(shù)統(tǒng)計如下圖:
(1)從參加問卷調(diào)查的6名學(xué)生中隨機抽取2名,求這2名學(xué)生來自同一小組的概率;
(2)從參加問卷調(diào)查的6名學(xué)生中隨機抽取3名,用表示抽得“表演社”小組的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓內(nèi)接等腰梯形中,已知,對角線、交于點,且圖中各條線段長均為正整數(shù),,圓的半徑.
(1)求證:圖中存在一個三角形,其三邊長均為質(zhì)數(shù)且組成等差數(shù)列;
(2)若給圖中的線(包括圓、梯形、梯形的對角線)作點染色,使、、染上紅色,其他點染上紅藍(lán)色之一,求證:圖中存在三個同色點,兩兩距離相等且長度為質(zhì)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點,則()=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃平縣且蘭高中全體師生努力下,有效進(jìn)行了“一對一輔導(dǎo)戰(zhàn)略”成績提高了一倍,下列是“優(yōu)秀學(xué)生”,“中等學(xué)生”,“差生”進(jìn)行“一對一”前后所占比例
戰(zhàn)略前 | 戰(zhàn)略后 | |||||
優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | 優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | |
20% | 50% | 30% | 25% | 45% | 30% |
則下列結(jié)論正確的是( )
A.實行“一對一”輔導(dǎo)戰(zhàn)略,差生成績并沒有提高.
B.實行“一對一”輔導(dǎo)戰(zhàn)略,中等生成績反而下降了.
C.實行“一對一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生成績提高了.
D.實行“一對一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生與中等生的成績沒有發(fā)生改變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,直線l過點.
(1)若點F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標(biāo)為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com