【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線, 所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間上的均勻隨機(jī)數(shù)和10個(gè)區(qū)間上的均勻隨機(jī)數(shù) ),其數(shù)據(jù)如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個(gè)曲邊三角形面積的一個(gè)近似值是( )

A. B. C. D.

【答案】A

【解析】解答:由表可知,向矩形區(qū)域內(nèi)隨機(jī)拋擲10個(gè)點(diǎn),

其中有6個(gè)點(diǎn)在曲邊三角形內(nèi),其頻率為.

∵矩形區(qū)域的面積為e1,

∴曲邊三角形面積的近似值為.

本題選擇A選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(2cosωx,cos2ωx), =(sinωx,1)(其中ω>0),令f(x)= ,且f(x)的最小正周期為π.
(1)求 的值;
(2)寫出 上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比為負(fù)值的等比數(shù)列{an}中,a1a5=4,a4=﹣1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= + +…+ ,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記Sn為正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和,若 ﹣7 ﹣8=0,且正整數(shù)m,n滿足a1ama2n=2 ,則 + 的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內(nèi)有解,則a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中, ),若傾斜角為且經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與圓相交于點(diǎn)點(diǎn)不是原點(diǎn)).

(1)求點(diǎn)的極坐標(biāo);

(2)設(shè)直線過(guò)線段的中點(diǎn),且直線交圓兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調(diào)性;

(2)若在定義域內(nèi)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬(wàn)元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)及橢圓,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).

1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案