A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\sqrt{10}$ |
分析 由$\frac{co{s}^{2}θ}{{x}^{2}}$+$\frac{si{n}^{2}θ}{{y}^{2}}$=$\frac{10}{3({x}^{2}+{y}^{2})}$,兩邊同乘以x2+y2得到$(\frac{y}{x}cosθ)^{2}+(\frac{x}{y}sinθ)^{2}$=$\frac{7}{3}$;把$\frac{sinθ}{x}$=$\frac{cosθ}{y}$代入上式得${(\frac{co{s}^{2}θ}{sinθ})}^{2}+{(\frac{si{n}^{2}θ}{cosθ})}^{2}$=$\frac{7}{3}$,再將四個答案逐一代入判斷,可得答案.
解答 解:∵θ∈($\frac{π}{4}$,$\frac{π}{2}$),
∴tanθ>1,
∵$\frac{sinθ}{x}$=$\frac{cosθ}{y}$,
∴$\frac{x}{y}$=$\frac{sinθ}{cosθ}$=tanθ>1,
故可排除A,C,
又由$\frac{co{s}^{2}θ}{{x}^{2}}$+$\frac{si{n}^{2}θ}{{y}^{2}}$=$\frac{10}{3({x}^{2}+{y}^{2})}$,
兩邊同乘以x2+y2得到$(\frac{y}{x}cosθ)^{2}+(\frac{x}{y}sinθ)^{2}$=$\frac{7}{3}$;
把$\frac{sinθ}{x}$=$\frac{cosθ}{y}$代入上式得${(\frac{co{s}^{2}θ}{sinθ})}^{2}+{(\frac{si{n}^{2}θ}{cosθ})}^{2}$=$\frac{7}{3}$,
當(dāng)$\frac{x}{y}$=$\frac{sinθ}{cosθ}$=tanθ=$\sqrt{3}$時,sinθ=$\frac{\sqrt{3}}{2}$,cosθ=$\frac{1}{2}$,
代入${(\frac{co{s}^{2}θ}{sinθ})}^{2}+{(\frac{si{n}^{2}θ}{cosθ})}^{2}$=$\frac{7}{3}$滿足條件,
故B正確,D錯誤;
故選:B.
點(diǎn)評 本題考查的知識點(diǎn)是三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系,難度較大,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow a=(-1,2),\overrightarrow b=(4,2)$ | B. | $\overrightarrow a=(-3,2),\overrightarrow b=(6,-4)$ | C. | $\overrightarrow a=(\frac{3}{2},-1),\overrightarrow b=(10,5)$ | D. | $\overrightarrow a=(0,-1),\overrightarrow b=(3,1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù) f(x)的最小正周期為π | B. | 函數(shù) f(x)是偶函數(shù) | ||
C. | 函數(shù) f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對稱 | D. | 函數(shù) f(x)在區(qū)間$[0,\frac{π}{2}]$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com