11.關(guān)于x的不等式ax2+bx+2>0的解為$(-\frac{1}{2},\frac{1}{3})$.
(1)求a,b的值;
(2)求關(guān)于x的不等式$\frac{ax+b}{x-2}$≥0的解集.

分析 (1)由題意知:x=-$\frac{1}{2}$,x=$\frac{1}{3}$是方程ax2+bx+2=0的兩根,由韋達(dá)定理可解得系數(shù)a,b的值.
(2)根據(jù)分式不等式的解法進(jìn)行求解即可.

解答 解:(1)∵x的不等式ax2+bx+2>0的解為$(-\frac{1}{2},\frac{1}{3})$.
∴x=-$\frac{1}{2}$,x=$\frac{1}{3}$是方程ax2+bx+2=0的兩根,且a<0,
由韋達(dá)定理可得:$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{2}{a}}\end{array}\right.$,解得a=-12,b=-2.
(2)∵a=-12,b=-2.
∴不等式$\frac{ax+b}{x-2}$≥0等價(jià)為$\frac{-12x-2}{x-2}≥0$,
即$\frac{6x+1}{x-2}≤0$,
解得-$\frac{1}{6}$≤x<2,
即不等式的解集為[-$\frac{1}{6}$,2).

點(diǎn)評(píng) 本題考查了一元二次不等式以及分式不等式的解法,考查了一元二次方程的根與系數(shù)關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=(x2-x+1)ex(其中e是自然對(duì)數(shù)的底數(shù))在區(qū)間[-2,0]上的最大值是$\frac{3}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),若E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn).則$\overrightarrow{AD}$•$\overrightarrow{EP}$的取值范圍是( 。
A.[-6,6]B.[-9,9]C.[0,8]D.[-2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知扇形的周長(zhǎng)為20,當(dāng)扇形的圓心角為2弧度時(shí),它有最大的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知關(guān)于x的不等式|2x-m|≤1有且僅有一個(gè)整數(shù)解且其值為2.
(1)求整數(shù)m的值;
(2)在(1)條件下,求不等式|x-1|+|x-3|≥m的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)的零點(diǎn)與g(x)=lnx+2x-8的零點(diǎn)之差的絕對(duì)值不超過(guò)0.5,則f(x)可以是( 。
A.$f(x)=ln(x-\frac{5}{2})$B.f(x)=(x-4)2C.f(x)=ex-2-1D.f(x)=3x-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x,y均為正數(shù),θ∈($\frac{π}{4}$,$\frac{π}{2}$),且滿足$\frac{sinθ}{x}$=$\frac{cosθ}{y}$,$\frac{co{s}^{2}θ}{{x}^{2}}$+$\frac{si{n}^{2}θ}{{y}^{2}}$=$\frac{10}{3({x}^{2}+{y}^{2})}$,則$\frac{x}{y}$=( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{3\sqrt{10}}{10}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-alnx+b.(a∈R)
(1)若曲線y=f(x)在x=1處的切線的方程為3x-y-3=0,求實(shí)數(shù)a、b的值;
(2)若x=1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(3)若-3≤a<0,且對(duì)任意x1,x2∈(0,t],都有|f(x1)-f(x2)|≤4|$\frac{1}{x_1}-\frac{1}{x_2}$|,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}滿足an+1=2an-1(n∈N+),a1=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Sn(n∈N+).

查看答案和解析>>

同步練習(xí)冊(cè)答案