【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼,祖暅原理的?nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為),四棱錐的底面是有一個(gè)角為的菱形(邊長為),圓錐的體積為,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為( )
A. 錢
B. 錢
C. 錢
D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +lg(1+3x)的定義域是( )
A.(﹣∞,﹣ )?
B.(﹣ , )∪( ,+∞)?
C.( ,+∞)?
D.( , )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣3ax)對(duì)任意的x1 , x2∈[ ,+∞),x1≠x2時(shí)都滿足 <0,則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(0, ]
C.(0, )
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形, 平面, 是等腰三角形, , 是的一個(gè)三等分點(diǎn)(靠近點(diǎn)),的延長線與的延長線交于點(diǎn),連接.
(1)求證: ;
(2)求證:在線段上可以分別找到兩點(diǎn), ,使得直線平面,并分別求出此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,其中a>0,且a≠1.
(1)若0<a<1,求滿足不等式f(x)<1的x的取值的集合;
(2)求關(guān)于x的不等式f(x)≥g(x)的解的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x , |(x≥0),圖象如圖所示.函數(shù)g(x)=﹣x2﹣2x+a,(x<0),其圖象經(jīng)過點(diǎn)A(﹣1,2).
(1)求實(shí)數(shù)a的值,并在所給直角坐標(biāo)系xOy內(nèi)做出函數(shù)g(x)的圖象;
(2)設(shè)h(x)= ,根據(jù)h(x)的圖象寫出其單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(x﹣ )圖象上所有的點(diǎn)( ),可以得到函數(shù)y=sin(x+ )的圖象.
A.向左平移 單位?
B.向右平移 單位
C.向左平移 單位?
D.向右平移 單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com