【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A. 錢
B. 錢
C. 錢
D. 錢
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y), .
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (a>0).
(1)證明:當x>0時,f(x)在 上是減函數(shù) ,在上是增函數(shù),并寫出當x<0時f(x)的單調區(qū)間;
(2)已知函數(shù) ,函數(shù)g(x)=﹣x﹣2b,若對任意x1∈[1,3],總存在x2∈[1,3],使得g(x2)=h(x1)成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)討論的單調性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得,試判斷與的大小關系并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x) 是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為 .
下列選項正確的是( )
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對任意,都有,則稱函數(shù)是“以為界的類斜率函數(shù)”.
(1)試判斷函數(shù)是否為“以為界的類斜率函數(shù)”;
(2)若實數(shù),且函數(shù)是“以為界的類斜率函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某房產開發(fā)商投資81萬元建一座寫字樓,第一年裝修費為1萬元,以后每年增加裝修費2萬元,現(xiàn)把寫字樓出租,每年收入租金30萬元.
(1)若扣除投資和各種裝修費,則從第幾年開始獲取純利潤?
(2)若干年后開發(fā)商為了投資其他項目,有兩種處理方案:
①年平均利潤最大時,以50萬元出售該樓;
②純利潤總和最大時,以10萬元出售該樓;
問選擇哪種方案盈利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|0< ≤1},B={y|y=( )x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學家祖沖之的兒子祖暅首先提出來的,祖暅原理的內容是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為),四棱錐的底面是有一個角為的菱形(邊長為),圓錐的體積為,現(xiàn)用平行于這兩個平行平面的平面去截三個幾何體,如果截得的三個截面的面積相等,那么,下列關系式正確的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com