【題目】已知點是拋物線的焦點,是其準線上任意一點,過點作直線,與拋物線相切,,為切點,,與軸分別交于,兩點.
(1)求焦點的坐標,并證明直線過點;
(2)求四邊形面積的最小值.
科目:高中數學 來源: 題型:
【題目】己知橢圓過點,,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過原點的直線,與圓分別交于,兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:()過點,離心率為.其左、右焦點分別為,,O為坐標原點.直線l:與以線段為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點.
(1)求橢圓C的方程;
(2)若滿足,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際上通常用年齡中位數指標作為劃分國家或地區(qū)人口年齡構成的標準:年齡中位數在20歲以下為“年輕型”人口;年齡中位數在20~30歲為“成年型”人口;年齡中位數在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數的影響.據此,對我國人口年齡構成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設是分別關于兩坐標軸及坐標原點的對稱點,平行于的直線交于異于的兩點.點關于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產企業(yè)加班加點生產口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產企業(yè)在加大生產的同時,狠抓質量管理,不定時抽查口罩質量,該企業(yè)質檢人員從所生產的口罩中隨機抽取了100個,將其質量指標值分成以下六組:,,,…,,得到如下頻率分布直方圖.
(1)求出直方圖中的值;
(2)利用樣本估計總體的思想,估計該企業(yè)所生產的口罩的質量指標值的平均數和中位數(同一組中的數據用該組區(qū)間中點值作代表,中位數精確到0.01);
(3)現規(guī)定:質量指標值小于70的口罩為二等品,質量指標值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機抽取2個作進一步的質量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為實現有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結合某貧困村水質優(yōu)良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養(yǎng)殖試驗,試驗后選擇其中一種進行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.
(1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數為,求的分布列和數學期望;
(2)試驗后發(fā)現乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com