【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于的直線交于異于的兩點.點關(guān)于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
【答案】(1);(2)證明見解析.
【解析】
試題分析:(1)因為離心率為,所以;即的方程為:,代入即可;(2)設(shè)直線的斜率為,則要證直線與軸圍成的三角形是等腰三角形需證.由已知可得直線的斜率為,則直線的方程為:,聯(lián)立直線和橢圓的方程,找到斜率,代入相應(yīng)的量即可.
試題解析:(1)因為離心率為,所以,
從而的方程為:
代入解得:,
因此.
所以橢圓的方程為:
(2)由題設(shè)知的坐標(biāo)分別為,
因此直線的斜率為,
設(shè)直線的方程為:,
由得:,
當(dāng)時,不妨設(shè),
于是,
分別設(shè)直線的斜率為,
則,
則要證直線與軸圍成的三角形是等腰三角形,
只需證,
而
所以直線與軸轉(zhuǎn)成的三角形是等腰三角形
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意,給定區(qū)間,設(shè)函數(shù)表示實數(shù)與所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對值.
(1)當(dāng)時,求出的解析式;時,寫出絕對值符號表示的解析式;
(2)求,,判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)當(dāng)時,求方程的實根.(要求說明理由,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采購經(jīng)理指數(shù)(PMI)是衡量一個國家制造業(yè)的“體檢表”,是衡量制造業(yè)在生產(chǎn)新訂單、商品價格、存貨、雇員、訂單交貨、新出口訂單和進口等八個方面狀況的指數(shù),下圖為2018年9月—2019年9月我國制造業(yè)的采購經(jīng)理指數(shù)(單位:%).
(1)求2019年前9個月我國制造業(yè)的采購經(jīng)理指數(shù)的中位數(shù)及平均數(shù)(精確到0.1);
(2)從2019年4月—2019年9月這6個月任意選取2個月,求這兩個月至少有一個月采購經(jīng)理指數(shù)與上個月相比有所回升的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的焦點,是其準(zhǔn)線上任意一點,過點作直線,與拋物線相切,,為切點,,與軸分別交于,兩點.
(1)求焦點的坐標(biāo),并證明直線過點;
(2)求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點且漸近線為,則下列結(jié)論錯誤的是( )
A.曲線的方程為;
B.左焦點到一條漸近線距離為;
C.直線與曲線有兩個公共點;
D.過右焦點截雙曲線所得弦長為的直線只有三條;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英國統(tǒng)計學(xué)家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結(jié)果 | 民事庭 | 行政庭 | 合計 | 終審結(jié)果 | 民事庭 | 行政庭 | 合計 |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計 | 32 | 118 | 150 | 合計 | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若方程在區(qū)間內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com