【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點,則()=0

【答案】C

【解析】

試題分析:由于三次函數(shù)的三次項系數(shù)為正值,當(dāng)x→時,函數(shù)值,當(dāng)x→時,函數(shù)值也,又三次函數(shù)的圖象是連續(xù)不斷的,故一定穿過x軸,即一定x0∈Rf(x0)0,選項A中的結(jié)論正確;函數(shù)f(x)的解析式可以通過配方的方法化為形如(xm)3n(xm)h的形式,通過平移函數(shù)圖象,函數(shù)的解析式可以化為yx3nx的形式,這是一個奇函數(shù),其圖象關(guān)于坐標(biāo)原點對稱,故函數(shù)f(x)的圖象是中心對稱圖形,選項B中的結(jié)論正確;由于三次函數(shù)的三次項系數(shù)為正值,故函數(shù)如果存在極值點x1,x2,則極小值點x2x1,即函數(shù)在-到極小值點的區(qū)間上是先遞增后遞減的,所以選項C中的結(jié)論錯誤;根據(jù)導(dǎo)數(shù)與極值的關(guān)系,顯然選項D中的結(jié)論正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,)的圖象關(guān)于點 成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:

①直線是函數(shù)圖象的一條對稱軸;②函數(shù)為偶函數(shù);

③函數(shù)的圖象的所有交點的橫坐標(biāo)之和為.

其中正確的判斷是__________________.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各等式(i為虛數(shù)單位):

(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;

(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;

(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;

(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.

f(x)=cos x+isin x

猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二屆世界青年奧林匹克運動會,中國獲37金,13銀,13銅共63枚獎牌居獎牌榜首位,并打破十項青奧會記錄.由此許多人認(rèn)為中國進(jìn)入了世界體育強國之列,也有許多人持反對意見.有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2 548名男性公民中有1 560名持反對意見,2 452名女性公民中有1 200人持反對意見,在運用這些數(shù)據(jù)說明中國的獎牌數(shù)是否與中國進(jìn)入體育強國有無關(guān)系時,用什么方法最有說服力(  )

A. 平均數(shù)與方差 B. 回歸直線方程

C. 獨立性檢驗 D. 概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的右焦點為F,直線y= x與雙曲線相交于A、B兩點.若AF⊥BF,則雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額.

: 回歸方程, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,,

≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

同步練習(xí)冊答案