【題目】雙曲線 =1(a>0,b>0)的右焦點為F,直線y= x與雙曲線相交于A、B兩點.若AF⊥BF,則雙曲線的漸近線方程為 .
【答案】y=±2x
【解析】解:由題意可知:雙曲線 =1(a>0,b>0)焦點在x軸上,右焦點F(c,0),
則 ,整理得:(9b2﹣16a2)x2=9a2b2 , 即x2= ,
∴A與B關于原點對稱,設A(x, x),B(﹣x,﹣ x),
=(x﹣c, x), =(﹣x﹣c,﹣ x),
∵AF⊥BF,
∴ =0,即(x﹣c)(﹣x﹣c)+ x×(﹣ x)=0,
整理得:c2= x2 ,
∴a2+b2= × ,即9b4﹣32a2b2﹣16a4=0,
∴(b2﹣4a2)(9b2+4a2)=0,
∵a>0,b>0,
∴9b2+4a2≠0,
∴b2﹣4a2=0,
故b=2a,
雙曲線的漸近線方程y=± x=±2x,
所以答案是:y=±2x.
科目:高中數學 來源: 題型:
【題目】設f(x)=ax3+bx+c為奇函數其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數f/(x)的最小值為-12
(1)求a,b,c的值
(2)求函數極大值和極小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=,下列結論中錯誤的是
A. , f()=0
B. 函數y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調遞減
D. 若是f(x)的極值點,則()=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣ )
(1)若 ⊥ ,求sin(x+ )的值;
(2)設f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=log3(x2+2x﹣8)的定義域為A,函數g(x)=x2+(m+1)x+m.
(1)若m=﹣4時,g(x)≤0的解集為B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知過點的直線的參數方程是(為參數).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC的內角A,B,C的對邊分別為a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 與雙曲線 ,給出下列說法,其中錯誤的是( )
A.它們的焦距相等
B.它們的焦點在同一個圓上
C.它們的漸近線方程相同
D.它們的離心率相等
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com