已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)令若至少存在一個(gè)實(shí)數(shù),使成立,求實(shí)數(shù)的取值范圍.

(Ⅰ)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(Ⅱ);(Ⅲ).

解析試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于零解得單調(diào)增區(qū)間,令導(dǎo)數(shù)小于零得單調(diào)減區(qū)間;(Ⅱ)令導(dǎo)數(shù)等于零得,然后對(duì)處斷開進(jìn)行討論,在上求出函數(shù)的最小值,令其大于零解得的范圍;(Ⅲ)由于存在,使,則,令,則大于的最小值.
試題解析:(Ⅰ)由,所以
,故的單調(diào)遞增區(qū)間是,    3分
,故的單調(diào)遞減區(qū)間是.    4分
(Ⅱ) 由.  5分                
①當(dāng)時(shí),.此時(shí)上單調(diào)遞增.故,符合題意.       6分
②當(dāng)時(shí),.當(dāng)變化時(shí)的變化情況如下表:










單調(diào)遞減
極小值
單調(diào)遞增
由此可得,在上,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè).
(Ⅰ)若對(duì)一切恒成立,求的取值范圍;
(Ⅱ)設(shè),且是曲線上任意兩點(diǎn),若對(duì)任意的,直線AB的斜率恒大于常數(shù),求的取值范圍;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的最小值;
(Ⅲ)若存在是自然對(duì)數(shù)的底數(shù))使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,求處的切線方程;
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線上有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù),使函數(shù)上有唯一的零點(diǎn),若有,請(qǐng)求出的范圍;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. (注:是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案