設(shè).
(Ⅰ)若對一切恒成立,求的取值范圍;
(Ⅱ)設(shè),且是曲線上任意兩點(diǎn),若對任意的,直線AB的斜率恒大于常數(shù),求的取值范圍;
(Ⅲ)求證:.
(Ⅰ);(Ⅱ);(Ⅲ)詳見解析
解析試題分析:(Ⅰ)
∴對一切恒成立等價于恒成立.
這只要求出函數(shù)的最小值即可.
(Ⅱ)直線的斜率為:
由題設(shè)有,不妨設(shè)
則
這樣問題轉(zhuǎn)化為函數(shù),在上單調(diào)遞增
所以恒成立,即對任意,恒成立
這樣只需求出的最小值即可.
(Ⅲ)不等式可變?yōu)?br />
由(Ⅰ) 知 (時取等號),在此不等式中
取得: 變形得:
取得: 變形得:
取得: 變形得:
取得: 變形得:
將以上不等式相加即可得證.
試題解析:(Ⅰ)
令,則
由得.所以在上單調(diào)遞增, 在單調(diào)遞減.
所以
由此得:
又時,即為 此時取任意值都成立
綜上得:
(II)由題設(shè)得,直線AB的斜率滿足:,
不妨設(shè),則即:
令函數(shù),則由以上不等式知:在上單調(diào)遞增,
所以恒成立
所以,對任意,恒成立
又=
故
(Ⅲ)由(Ⅰ) 知時取等號),
取,得
即 累加得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),數(shù)列,滿足0<<1, ,數(shù)列滿足,
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:0<<<1;
(Ⅲ)若且<,則當(dāng)n≥2時,求證:>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求的單調(diào)區(qū)間;
(II)設(shè),若在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中),且方程的兩個根分別為、.
(1)當(dāng)且曲線過原點(diǎn)時,求的解析式;
(2)若在無極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)令若至少存在一個實(shí)數(shù),使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com