【題目】如圖,三棱錐的三個側(cè)面均為邊長是的等邊三角形, , 分別為, 的中點.
(I)求的長.
(II)求證: .
(III)求三棱錐的表面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標系內(nèi)三點.
(1) 求過三點的圓的方程,并指出圓心坐標與圓的半徑;
(2)求過點與條件 (1) 的圓相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.某幾何體如圖所示, 平面, , 是邊長為的正三角形, , ,點、分別是、的中點.
(I)求證: 平面.
(II)求證:平面平面.
(III)求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長為,,分別是棱,的中點,過直線,的平面分別與棱、交于,,設(shè),,給出以下四個命題:
①平面平面;
②當且僅當時,四邊形的面積最小;
③四邊形周長,是單調(diào)函數(shù);
④四棱錐的體積為常函數(shù);
以上命題中假命題的序號為( ).
A. ①④ B. ② C. ③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB= .
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS﹣ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,為了解這項政策的落實情況,有關(guān)部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學(xué)生,再根據(jù)活動時間t(小時)進行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為人;
(2)補全條形統(tǒng)計圖;
(3)從抽查的學(xué)生中隨機詢問一名學(xué)生,該生當天在校體育活動時間低于1小時的概率是
(4)若當天在校學(xué)生數(shù)為1200人,請估計在當天達到國家規(guī)定體育活動時間的學(xué)生有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:
分組 | 頻數(shù) |
合計 |
(1)畫出頻率分布表,并畫出頻率分布直方圖;
(2)估計纖度落在中的概率及纖度小于的概率是多少?
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名籃球運動員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為。
(1)求乙投球的命中率。
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com