15.已知函數(shù)f(x)=excosx,則函數(shù)f(x)在點(0,f(0))處的切線方程為( 。
A.y=1B.x-y+1=0C.x+y+1=0D.x-y=0

分析 求出f(x)的導數(shù),切點切線的斜率和切點,由斜截式方程,即可得到切線的方程.

解答 解:函數(shù)f(x)=excosx的導數(shù)為f′(x)=ex(cosx-sinx),
函數(shù)f(x)在點(0,f(0))處的切線斜率為k=e0(cos0-sin0)=1,
切點為(0,1),
則函數(shù)f(x)在點(0,f(0))處的切線方程為y=x+1.
故選:B.

點評 本題考查導數(shù)的運用:求切線的方程,考查導數(shù)的幾何意義,正確求導是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+bx+c(a>0且bc≠0).
(Ⅰ)若|f(0)|=|f(1)|=|f(-1)|=1,試求f(x)的解析式;
(Ⅱ)令g(x)=2ax+b,若g(1)=0,又f(x)的圖象在x軸上截得的弦的長度為l,且0<l≤2,試比較b、c的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知一次函數(shù)f(x)是R上的增函數(shù),g(x)=f(x)(x+m),且f(f(x))=16x+5
(1)求f(x)的解析式;
(2)若g(x)在(1,+∞)上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖圓柱的底面周長為4π,高為2,圓錐的底面半徑是1,則該幾何體的體積為$\frac{22π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{2}x,x≤0\\{x^2}-4x,x>0\end{array}\right.$,若關(guān)于x的方程f(x)=m恰有三個互不相等的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(-32,0)B.(-16,0)C.(-8,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)$f(x)={x^3}-\sqrt{x}$的零點個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一個焦點與拋物線y2=4x的焦點重合,則雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的方程為$\frac{{x}^{2}}{\frac{1}{5}}-\frac{{y}^{2}}{\frac{4}{5}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,足球門左右門柱分別立在A、B處,假定足球門寬度AB為7米,在距離右門柱15米的C處,一球員帶球沿與球門線AC成28°角的CD方向以平均每秒6.5米的速度推進,2秒后到達D處射門.問:
(1)D點到左右門柱的距離分別為多少米?
(2)此時射門張角θ為多少?(注:cos28°≈$\frac{23}{26}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖.四棱錐P-ABCD,ABCD為矩形,E,F(xiàn)分別為AB,PC的中點,證明:EF∥平面PAD.

查看答案和解析>>

同步練習冊答案