20.函數(shù)$f(x)={x^3}-\sqrt{x}$的零點個數(shù)為2.

分析 構(gòu)造方程$f(x)={x^3}-\sqrt{x}$=0,解得答案.

解答 解:令函數(shù)$f(x)={x^3}-\sqrt{x}$=0,
解得:x=0,或x=1,
故函數(shù)$f(x)={x^3}-\sqrt{x}$有2個零點,
故答案為:2.

點評 本題考查的知識點是函數(shù)的零點,將問題轉(zhuǎn)化方程根的個數(shù)是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某三棱錐的三視圖如圖所示,該三棱錐的四個面的面積中,最大的面積是(  )
A.4$\sqrt{3}$B.8 $\sqrt{3}$C.4$\sqrt{7}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)求橢圓$\frac{x^2}{4}+{y^2}=1$的長軸和短軸的長、離心率、焦點和頂點的坐標(biāo).
(2)求焦點在y軸上,焦距是4,且經(jīng)過點M(3,2)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線f(x)=$\sqrt{x}$+$\frac{a}{x}$在(1,a+1)處的切線與直線3x+y=0垂直,則a等于(  )
A.-$\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=excosx,則函數(shù)f(x)在點(0,f(0))處的切線方程為( 。
A.y=1B.x-y+1=0C.x+y+1=0D.x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前5項和為105,且a10=2a5,對任意m∈N*,將數(shù)列{an}中不大于72m的項的個數(shù)記為bm
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an•bn求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對任意的x∈[-$\frac{π}{6}$,$\frac{π}{2}$],不等式sin2x+asinx+a+3≥0恒成立,則實數(shù)a的取值范圍是a≥-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AD是BC邊上中線,下列錯誤的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$C.$\overrightarrow{CA}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$D.$\overrightarrow{DB}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋物線x2-8y=0上一點M到準(zhǔn)線的距離是4,則點M的坐標(biāo)是( 。
A.(4,2)B.(-4,2)C.(4,2)或(-4,2)D.(2,4)

查看答案和解析>>

同步練習(xí)冊答案