在△ABC中,“cosA=cosB”是“sinA=sinB”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)三角函數(shù)的性質(zhì)以及充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:在△ABC中,若cosA=cosB,則A=B,則sinA=sinB成立,即充分性成立,
若sinA=sinB,則A=B,則cosA=cosB成立,即必要性成立,
則,“cosA=cosB”是“sinA=sinB”的充要條件,
故選:C
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3-2x-x2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列哪個函數(shù)與y=x是相同函數(shù)(  )
A、y=
x2
B、y=
x2
x
C、y=
3x3
D、y=alogax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在x∈R上恒有f(-x)=f(x),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2014)+f(2015)的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點A(3,0),B(0,1),C(1,1),P(x,y)在△ABC內(nèi)部(包括邊界),若目標(biāo)函數(shù)z=
ax+by
c
(a≠0)取得最大值時的最優(yōu)解有無窮多組,則點(a,b)的軌跡可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二面角M-l-N的平面角大小為
2
3
π,直線m⊥平面M,則平面N內(nèi)的直線與m所成角的取值范圍是( 。
A、[
π
6
,
π
2
]
B、[
π
4
,
π
2
]
C、[
π
3
,
π
2
]
D、[0,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈(-∞,0),則a+
4
b
,b+
4
c
,c+
4
a
( 。
A、都不大于-4
B、都不小于-4
C、至少有一個不大于-4
D、至少有一個不小于-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知從A口袋中摸出一個球是紅球的概率為
1
3
,從B口袋中摸出一個球是紅球的概率為
2
5
.現(xiàn)從兩個口袋中各摸出一個球,那么這兩個球中沒有紅球的概率是( 。
A、
2
15
B、
2
5
C、
7
15
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前三項分別為a1=
λ
,a2=
λ+2
,a3=
λ+4
,(其中λ為正常數(shù)).設(shè)f(x)=a12x+a22x2+a32x3+…an2xn
(1)歸納出數(shù)列{an}的通項公式,并證明數(shù)列{an}不可能為等比數(shù)列;
(2)若λ=1,求f(2)的值;
(3)若λ=4,試證明:當(dāng)n≥2時,an+1+an-1<2an

查看答案和解析>>

同步練習(xí)冊答案