【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),將函數(shù)y=f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后,所得圖象與原函數(shù)圖象重合ω最小值等于

【答案】3
【解析】解:∵函數(shù)y=sin(ωx+ )的圖象向右平移 個(gè)單位后與原圖象重合,
=n× ,n∈z,
∴ω=3n,n∈z,
又ω>0,故其最小值是3.
所以答案是:3.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+ )(A>0,ω>0)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0 , 2)和(x0+ ,﹣2).
(1)求函數(shù)f(x)的解析式;
(2)求sin(x0+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出m,n的值;

(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),且,則橢圓的離心率的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題14分)已知四棱錐P-ABCD,底面ABCD、邊長(zhǎng)為的菱形,又,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

1)證明:DN//平面PMB;

2)證明:平面PMB平面PAD

3)求點(diǎn)A到平面PMB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知,分別為橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上.

(1)求的最小值;

(2)已知直線l與橢圓C交于兩點(diǎn)A、B,過(guò)點(diǎn)且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問(wèn):四邊形PABQ能否成為平行四邊形?若能,請(qǐng)求出直線l的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= cos(2x+ )+sin2x
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)設(shè)函數(shù)g(x)對(duì)任意x∈R,有g(shù)(x+ )=g(x),且當(dāng)x∈[0, ]時(shí),g(x)= ﹣f(x),求g(x)在區(qū)間[﹣π,0]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中點(diǎn)為H,證明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案