【題目】若函數滿足對任意,都有成立,則實數的取值范圍是______.
【答案】
【解析】
根據題中條件,可以先判斷出函數f(x)在R上單調遞增,再結合分段函數的解析式,要每一段都是增函數,且分界點時右段函數的函數值要大于等于左段函數的函數值,列出不等關系,求解即可得到a的取值范圍.
:∵對任意x1≠x2,都有成立,
∴x1-x2與f(x1)-f(x2)同號,
根據函數單調性的定義,可知f(x)在R上是單調遞增函數,
∴當時,f(x)=(為增函數,則 ,即a<3,①
且當x=2時,有最小值 ;
當時,f(x)=為二次函數,圖象開口向下,對稱軸為x=2,
若f(x)在(-∞,2)上為增函數,且 ;
又由題意,函數在定義域R上單調遞增,
則,解得 ;②
綜合①②可得a的取值范圍: ,
即答案為.
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號).
①當0<CQ< 時,S為四邊形
②當CQ= 時,S為等腰梯形
③當CQ= 時,S與C1D1的交點R滿足C1R=
④當 <CQ<1時,S為六邊形
⑤當CQ=1時,S的面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有直線和平面,則下列四個命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近日,某地普降暴雨,當地一大型提壩發(fā)生了滲水現象,當發(fā)現時已有的壩面滲水,經測算,壩而每平方米發(fā)生滲水現象的直接經濟損失約為元,且滲水面積以每天的速度擴散.當地有關部門在發(fā)現的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.
寫出關于的函數關系式;
應安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項支出費用)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村電費收取有以下兩種方案供農戶選擇:
方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收;
方案二:不收管理費,每度0.58元.
(1)求方案一收費(元)與用電量(度)間的函數關系;
(2)老王家九月份按方案一交費35元,問老王家該月用電多少度?
(3)老王家該月用電量在什么范圍內,選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C: =1(a>b>0)的離心率為 ,其左焦點到點P(2,1)的距離為 ,不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△APB面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的參數方程為 (t為參數),其中p>0,焦點為F,準線為l.過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,其前n項和為Sn , {bn}是等比數列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數列{an}與{bn}的通項公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com