分析:由已知先找到數(shù)列{a
n}的項(xiàng)數(shù)的規(guī)律,于是當(dāng)取n時(shí),共有1+2+…+n項(xiàng),故取n時(shí)的所有項(xiàng)數(shù)之和=1+2+…+n=
,當(dāng)n=63時(shí),
=2016>2012,其各項(xiàng)排列為
,
,…,
,
,
,
,
.據(jù)以上分析可得出答案.
解答:數(shù)列{a
n}的各項(xiàng)按如下規(guī)律排列:
當(dāng)n=1時(shí),只有1項(xiàng),
;當(dāng)n=2時(shí),有1+2項(xiàng),
,
,
;…,
∴當(dāng)取n時(shí),共有1+2+…+n項(xiàng):
,
,
;…,
,
故取n時(shí)的所有項(xiàng)數(shù)之和=1+2+…+n=
,
令
≥2012,
當(dāng)n=63時(shí),
=2016>2012,其各項(xiàng)排列為
,
,…,
,
,
,
,
.
∴a
2012=
.
故答案為
.
點(diǎn)評(píng):分析其排列規(guī)律和項(xiàng)數(shù)規(guī)律是解決問(wèn)題的關(guān)鍵.