(2009•閔行區(qū)一模)已知無窮數(shù)列{an},首項a1=3,其前n項和為Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若數(shù)列{an}的各項和為-
8
3
a
,則a=
-
1
2
-
1
2
分析:由an+1=(a-1)•Sn+2,知a2=3a-1,a3=3a2-a,a4=3a3-a2,由數(shù)學(xué)歸納法可以求得:an+1=3an-an-1,又由于an+1=(a-1)Sn+2,且|a|=1時Sn都不等于(-
8
3
)a.那么:Sn=(3an-an-1)×
1
a-1
,由此能求出a的值.
解答:解:由an+1=(a-1)•Sn+2 可以知道:
a2=3a-1,
a3=3a2-a,
a4=3a3-a2,
由數(shù)學(xué)歸納法可以求得:an+1=3an-an-1,
又由于an+1=(a-1)Sn+2,
且|a|=1時Sn都不等于(-
8
3
)a
那么:Sn=(3an-an-1)×
1
a-1
,
當(dāng)n趨向無窮大時:若|a|>1,那么Sn也趨向無窮,不滿足題意,
若|a|<1,那么Sn=-
2
a-1
,
那么有:-
2
a-1
=-
8
3
a

解得:a=-
1
2

故答案為:-
1
2
點評:本題考查數(shù)列的應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意數(shù)列性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
m
=(a,  2b)
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大小;
(2)求sinA+
3
cosA
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)在平面在直角坐標(biāo)系中,定義
xn+1=yn-xn
yn+1=yn+xn
(n∈N*)為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換,我們把它稱為點變換.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)(n∈N*)是經(jīng)過點變換得到的一列點.設(shè)an=|PnPn+1|,數(shù)列{an}的前n項和為Sn,那么S20的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)函數(shù)f(x)=
3x
+1
的反函數(shù)f-1(x)=
(x-1)3
(x-1)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作銳角α,其終邊與單位圓相交于A點,若A點的橫坐標(biāo)
4
5
,則tan(
α
2
+
π
4
)
的值為
2
2

查看答案和解析>>

同步練習(xí)冊答案