【題目】已知函數(shù)

1當(dāng)時,試求處的切線方程;

2當(dāng)時,試求的單調(diào)區(qū)間;

3內(nèi)有極值,試求的取值范圍

【答案】1;2單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;3

【解析】

試題分析:1求導(dǎo),利用導(dǎo)數(shù)的幾何意義求解;2求導(dǎo),研究導(dǎo)函數(shù)的取值情況即可求解;3問題等價于有解,求導(dǎo)后分析其取值情況即可

試題解析1當(dāng)時,,,方程為;20,當(dāng)時,對于,恒成立,所以,,,所以單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;3內(nèi)有極值,則內(nèi)有解,令,設(shè),,所以 當(dāng)時,恒成立,所以單調(diào)遞減,又因為,又當(dāng)時,,即上的值域為,

所以當(dāng)時, 有解

設(shè),則,,所以單調(diào)遞減,

因為,

所以有唯一解

所以有:

所以當(dāng)時,內(nèi)有極值且唯一,當(dāng)時,當(dāng)時,恒成立,單調(diào)遞增,不成立,綜上,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,.

(1)證明:平面平面;

(2)已知為棱上一點,若,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=g(x)=f(x)+x-6lnx,其中R.

(1)當(dāng)=1,判斷f(x)的單調(diào)性;

(2)當(dāng)=2,求出g(x)在(0,1)上的最大值;

(3)設(shè)函數(shù)當(dāng)=2,總有成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過作直線,交(1)中軌跡兩點,若中點的縱坐標(biāo)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,,三個條件中任選一個補(bǔ)充在下面問題中,并加以解答.

已知的內(nèi)角AB,C的對邊分別為a,b,c,若,______,求的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只小蜜蜂位于數(shù)軸上的原點處,小蜜蜂每一次具有只向左或只向右飛行一個單位或者兩個單位距離的能力,且每次飛行至少一個單位.若小蜜蜂經(jīng)過5次飛行后,停在數(shù)軸上實數(shù)3位于的點處,則小蜜蜂不同的飛行方式有多少種?( )

A. 5 B. 25 C. 55 D. 75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .

(1)求橢圓 的方程;

(2)過點 的直線 交橢圓于 , 兩個不同的點,且 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案