【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,再從這5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)見解析(2)
【解析】
(1)根據(jù)題意填寫列聯(lián)表,計(jì)算觀測值,對照臨界值得出結(jié)論;
(2)根據(jù)題意,得出抽取男女生人數(shù),列出所有的基本事件,找出滿足條件的基本事件,利用古典概型概率公式求得結(jié)果.
(1)
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合計(jì) | 150 | 50 | 200 |
由列聯(lián)表中數(shù)據(jù),
計(jì)算得到的觀測值為 .
所以在犯錯(cuò)誤的概率不超過0.025的前提下能判斷“鍛煉達(dá)標(biāo)”與性別有關(guān).
(2)“鍛煉達(dá)標(biāo)”的學(xué)生有50人,男、女生人數(shù)比為,
故用分層抽樣方法從中抽取5人,
有3人是男生,記為,有2人是女生,記為,
則從這5人中選出2人,
選法有共10種,
設(shè)事件表示“作重點(diǎn)發(fā)言的2人中,至少有1人是女生”,
則事件發(fā)生的情況為,共7種.
所以所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試求在處的切線方程;
(2)當(dāng)時(shí),試求的單調(diào)區(qū)間;
(3)若在內(nèi)有極值,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線.
(1)若直線與直線平行,求實(shí)數(shù)的值;
(2)若, ,點(diǎn)在直線上,已知的中點(diǎn)在軸上,求點(diǎn)的坐標(biāo).
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)兩直線平行,對應(yīng)方向向量共線,列方程即可求出的值;(2)根據(jù)時(shí),直線的方程設(shè)出點(diǎn)的坐標(biāo),由此求出的中點(diǎn)坐標(biāo),再由中點(diǎn)在軸上求出點(diǎn)的坐標(biāo).
試題解析:(1)∵直線與直線平行,
∴,
∴,經(jīng)檢驗(yàn)知,滿足題意.
(2)由題意可知: ,
設(shè),則的中點(diǎn)為,
∵的中點(diǎn)在軸上,∴,
∴.
【題型】解答題
【結(jié)束】
16
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平面,,分別是,的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)若,,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)請結(jié)合所給表格,在所給的坐標(biāo)系中作出函數(shù)一個(gè)周期內(nèi)的簡圖;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求的最大值和最小值及相應(yīng)的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過10萬元時(shí),按銷售利潤的15%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過10萬元時(shí),前10萬元按銷售利潤的15%進(jìn)行獎(jiǎng)勵(lì),若超出部分為t萬元,則超出部分按進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎(jiǎng)金y關(guān)于銷售利潤x的關(guān)系式;
(2)如果業(yè)務(wù)員小王獲得3.5萬元的獎(jiǎng)金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】, , .
(1)證明:存在唯一實(shí)數(shù),使得直線和曲線相切;
(2)若不等式有且只有兩個(gè)整數(shù)解,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.
(Ⅰ)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(Ⅱ)求證;
(Ⅲ)若,求數(shù)集中所有元素的和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com