【題目】在①,,②,,③,三個(gè)條件中任選一個(gè)補(bǔ)充在下面問(wèn)題中,并加以解答.
已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,______,求的面積S.
【答案】答案不唯一,具體見(jiàn)解析
【解析】
若選①,首先根據(jù)同角三角函數(shù)的基本關(guān)系求出,,再根據(jù)兩角和的正弦公式求出,由正弦定理求出邊,最后由面積公式求出三角形的面積.
若選②,由正弦定理將角化邊結(jié)合余弦定理求出邊,最后由面積公式求出三角形的面積.
若選③,由余弦定理求出邊,由同角三角函數(shù)的基本關(guān)系求出,最后由面積公式求出三角形的面積.
解:選①
∵,,
∴,,
∴
,
由正弦定理得,
∴.
選②
∵,
∴由正弦定理得.
∵,∴.
又∵,
∴,
∴,
∴.
選③
∵ ,,
∴ 由余弦定理得,即,
解得或(舍去).
,
∴的面積.
故答案為:選①為;選②為;選③為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線(xiàn)化成普通坐標(biāo)方程;
(2)求兩曲線(xiàn)的公共弦長(zhǎng)及公共弦所在的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為 (θ為參數(shù)),直線(xiàn)l的參數(shù)方程為,(t為參數(shù)).
(1)若a=-1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,點(diǎn)是中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試求在處的切線(xiàn)方程;
(2)當(dāng)時(shí),試求的單調(diào)區(qū)間;
(3)若在內(nèi)有極值,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△中,已知,直線(xiàn)經(jīng)過(guò)點(diǎn).
(Ⅰ)若直線(xiàn):與線(xiàn)段交于點(diǎn),且為△的外心,求△的外接圓的方程;
(Ⅱ)若直線(xiàn)方程為,且△的面積為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行抽獎(jiǎng)活動(dòng),從裝有編號(hào)0,1,2,3四個(gè)球的抽獎(jiǎng)箱中,每次取出后放回,連續(xù)取兩次,取出的兩個(gè)小球號(hào)碼相加之和等于6中特等獎(jiǎng),等于5中一等獎(jiǎng),等于4中二等獎(jiǎng),等于3中三等獎(jiǎng).
(1)求中二等獎(jiǎng)的概率;
(2)求未中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)請(qǐng)結(jié)合所給表格,在所給的坐標(biāo)系中作出函數(shù)一個(gè)周期內(nèi)的簡(jiǎn)圖;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求的最大值和最小值及相應(yīng)的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com