【題目】為了解學生完成數(shù)學作業(yè)所需時間,某學校統(tǒng)計了高三年級學生每天完成數(shù)學作業(yè)的平均時間介于30分鐘到90分鐘之間,圖5是統(tǒng)計結果的頻率分布直方圖.

(1)數(shù)學教研組計劃對作業(yè)完成較慢的20%的學生進行集中輔導,試求每天完成數(shù)學作業(yè)的平均時間為多少分鐘以上的學生需要參加輔導?

(2)現(xiàn)從高三年級學生中任選4人,記4人中每天完成數(shù)學作業(yè)的平均時間不超過50分鐘的人數(shù)為,求的分布列和期望.

【答案】(1)65(2)

【解析】試題分析:(1)由頻率分布直方圖知70-90有10%,60-70有20%,所以65分鐘以上的同學需要參加輔導(2)由題意得,根據(jù)二項分布公式可得分布列及數(shù)學期望

試題解析:(Ⅰ)設每天完成作業(yè)所需時間為x分鐘以上的同學需要參加輔導,則

,(分鐘),

所以,每天完成數(shù)學作業(yè)的平均時間為65分鐘以上的同學需要參加輔導.

(Ⅱ)把統(tǒng)計的頻率作為概率,則選出的每個學生完成作業(yè)的時間不超過50分鐘的概率為0.2

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ +4,(a≠0,b≠0),則f(2)+f(﹣2)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知數(shù)列{an}是等差數(shù)列,且a1,a2(a1<a2)分別為方程x2﹣6x+5=0的二根.

(1)求數(shù)列{an}的前n項和Sn

(2)在(1)中,設bn=,求證:當c=﹣時,數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lnx+ax2﹣ax+5,a∈R.
(1)若函數(shù)f(x)在x=1處有極值,求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)內單調遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳說古希臘畢達哥拉斯學派的數(shù)學家經常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b5=;
(2)b2n1=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對具有線性相關關系的兩個變量y與x進行回歸分析,得到一組樣本數(shù)據(jù)(x1 , y1),(x2 , y2)…(xn , yn),則下列說法中不正確的是(
A.若最小二乘法原理下得到的回歸直線方程 =0.52x+ ,則y與x具有正相關關系
B.殘差平方和越小的模型,擬合的效果越好
C.在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內,說明選用的模型比較合適
D.用相關指數(shù)R2來刻畫回歸效果,R2越小說明擬合效果越好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

(1)令,求的單調區(qū)間;

(2)已知處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知動圓恒過且與直線相切,動圓圓心的軌跡記為;直線軸的交點為,過點且斜率為的直線與軌跡有兩個不同的公共點, 為坐標原點.

(1)求動圓圓心的軌跡的方程,并求直線的斜率的取值范圍;

(2)點是軌跡上異于, 的任意一點,直線, 分別與過且垂直于軸的直線交于, ,證明: 為定值,并求出該定值;

(3)對于(2)給出一般結論:若點,直線,其它條件不變,求的值(可以直接寫出結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①由樣本數(shù)據(jù)得到的回歸方程 必過樣本點的中心( , );
②用相關指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為 =3﹣2.5x,則變量x每增加1個單位時,y平均減少2.5個單位;
④在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越窄,殘差平方和越。
上述四個命題中,正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案