已知互不相同的直線l,m,n與平面α,β,則下列敘述錯誤的是( 。
A、若m∥l,n∥l,則m∥n
B、若m∥α,n∥α,則m∥n
C、若m⊥α,n∥β,則α⊥β
D、若m⊥β,α⊥β,則m∥α或m?α
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:若m∥l,n∥l,則由平行公理得m∥n,故A正確;
若m∥α,n∥α,則m與n相交、平行或異面,故B錯誤;
若m⊥α,n∥β,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若m⊥β,α⊥β,則由平面與平面垂直的性質(zhì)得m∥α或m?α,故D正確.
故選:B.
點評:本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an=17-3n,則使其前n項的和Sn取最大值時n的值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入N=2015,則輸出S等于( 。
A、1
B、
2012
2013
C、
2013
2014
D、
2014
2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P為雙曲線
x2
a2
-y2=1虛軸的一個端點,Q為雙曲線上一動點,則|PQ|最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(x2-
i
x
n展開式中第三項與第五項系數(shù)之比為-
3
14
,其中i是虛數(shù)單位,則常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-px+q=0的解集為(-
1
2
,
1
3
),則不等式qx2+px+1>0的解集為( 。
A、(-3,2)
B、(-2,3)
C、(-
1
3
,
1
2
D、(-
1
2
,
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(Ⅰ)若f(0)≥1,求a的取值范圍;
(Ⅱ)求f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的A,B,C,D,E五種商品有購買意向.已知該網(wǎng)民購買A,B兩種商品的概率均為
3
4
,購買C,D兩種商品的概率均為
2
3
,購買E種商品的概率為
1
2
.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機變量η表示該網(wǎng)民購買商品的種數(shù),求η的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n∈N*,且(-
1
4
n<(-
1
3
n,則n的最小值是
 

查看答案和解析>>

同步練習冊答案