【題目】某醫(yī)科大學實習小組為研究實習地晝夜溫差與患感冒人數(shù)之間的關系,分別到當?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進行檢驗.

1)求剩余的2組數(shù)據(jù)都是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請根據(jù)這四組數(shù)據(jù),求出關于的線性回歸方程,用分數(shù)表示);

②若某日的晝夜溫差為,預測當日就診人數(shù)約為多少人?

附參考公式:.

【答案】1;(2)①;②14.

【解析】

1)記六組依次為1,23,4,5,6,列出從這六組數(shù)據(jù)中隨機選取4組數(shù)據(jù)后,剩余的2組數(shù)據(jù)所有可能的情況,同時得出剩余的2組數(shù)據(jù)都是20日的情況,計數(shù)后計算概率;

2)根據(jù)所給數(shù)據(jù)計算,然后計算回歸方程中的系數(shù),得回歸方程,把代入回歸方程可得估計值.

1)記六組依次為12,3,4,56,從這六組數(shù)據(jù)中隨機選取4組數(shù)據(jù)后,剩余的2組數(shù)據(jù)所有可能的情況為:,,,,,,,,,,共15種,其中2組數(shù)據(jù)都是20日,即都取自第24,6組的,3種,.

根據(jù)古典概型概率公式,剩余的2組數(shù)據(jù)都是20日的概率為:;

2)①由所選數(shù)據(jù)得,,

由參考公式得

.

所以關于的線性回歸方程為.

②當時,,

所以晝夜溫差為時,當日就診人數(shù)約為14.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

討論的單調性;

時,若關于x的不等式恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|xa||x2|1

1)當a1時,求不等式fx≥0的解集;

2)當fx≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結,的中點,則在翻折過程中,下列說法中所有正確的是(

A.存在某個位置,使得

B.翻折過程中,的長是定值

C.,則

D.,當三棱錐的體積最大時,三棱錐的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,我國農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的97.5%下降到2018年底的1.4%,創(chuàng)造了人類減貧史上的中國奇跡,為全球減貧事業(yè)貢獻了中國智慧和中國方案.貧困發(fā)生率是指低于貧困線的人口占全體人口的比例.2012年至2018年我國貧困發(fā)生率的數(shù)據(jù)如下表:

年份(

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率%

10.2

8.5

7.2

5.7

4.5

3.1

1.4

1)從表中所給的7個貧困發(fā)生率數(shù)據(jù)中任選兩個,求至少有一個低于5%的概率;

2)設年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預測2019年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱(底面為正三角形的直棱柱)ABCA1B1C1中,已知ABAA12,點QBC的中點.

1)求證:平面AQC1⊥平面B1BCC1;

2)求直線CC1與平面AQC1所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,

)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;

)在()的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點F到左頂點的距離為3.

1)求橢圓C的方程;

2)設O是坐標原點,過點F的直線與橢圓C交于A,B兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了慶祝中華人民共和國成立周年,某車間內舉行生產(chǎn)比賽,由甲乙兩組內各隨機選取名技工,在單位時間生產(chǎn)同一種零件,其生產(chǎn)的合格零件數(shù)的莖葉圖如下:

已知兩組所選技工生產(chǎn)的合格零件的平均數(shù)均為.

1)分別求出的值;

2)分別求出甲乙兩組技工在單位時間內加工的合格零件的方差,并由此估計兩組技工的生產(chǎn)水平;

3)若單位時間內生產(chǎn)的合格零件個數(shù)不小于平均數(shù)的技工即為生產(chǎn)能手,根據(jù)以上數(shù)據(jù),能否認為該車間50%以上的技工都是生產(chǎn)能手?

(注:方差,其中為數(shù)據(jù)的平均數(shù)).

查看答案和解析>>

同步練習冊答案