在中,分別是角A,B,C的對(duì)邊,且滿(mǎn)足.
(1)求角B的大;
(2)若最大邊的邊長(zhǎng)為,且,求最小邊長(zhǎng).
(1);(2)
解析試題分析:(1)因?yàn)樵?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/d/1hosw4.png" style="vertical-align:middle;" />中,分別是角A,B,C的對(duì)邊,且滿(mǎn)足,所以通過(guò)化簡(jiǎn)可得一個(gè)關(guān)于的等式.再結(jié)合余弦定理即可求得結(jié)論.
(2)由(1)即最大邊的邊長(zhǎng)為可得邊最大,又根據(jù),可得.所以可知邊最小.由于已知一邊一角,另兩邊存在等量關(guān)系,所以利用余弦定理即可求得最小邊的值.本小題利用正弦定理同樣是可以的.
試題解析:(Ⅰ)由整理得,
即, ∴,
∵,∴. 6分
(2)∵,∴最長(zhǎng)邊為, ∵,∴,
∴為最小邊,由余弦定理得,解得,
∴,即最小邊長(zhǎng)為 . 12分
考點(diǎn):1.正弦定理.2.余弦定理.3.解三角形的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖像經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)在中,、、所對(duì)的邊分別為、、,若,且.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是 a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最小正周期和對(duì)稱(chēng)軸的方程;
(2)設(shè)的角的對(duì)邊分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
座落于我市紅梅公園邊的天寧寶塔堪稱(chēng)中華之最,也堪稱(chēng)佛塔世界之最.如圖,已知天寧寶塔AB高度為150米,某大樓CD高度為90米,從大樓CD頂部C看天寧寶塔AB的張角,求天寧寶塔AB與大樓CD底部之間的距離BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,,函數(shù).
(1)求的最大值,并求取最大值時(shí)的取值集合;
(2)已知 分別為內(nèi)角的對(duì)邊,且成等比數(shù)列,角為銳角,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某單位有、、三個(gè)工作點(diǎn),需要建立一個(gè)公共無(wú)線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、、四點(diǎn)在同一平面內(nèi).
(Ⅰ)求的大;
(Ⅱ)求點(diǎn)到直線的距
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com