【題目】己知函數(shù)
(1)當(dāng)時,設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)是的導(dǎo)函數(shù),若對任意的恒成立,求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,求在區(qū)間上的最大值和最小值.
【答案】(1)當(dāng),單調(diào)遞減; 單調(diào)遞增, 當(dāng),取得極小值;(2) ;(3) 的最大值,的最小值.
【解析】
(1)把代入可得,對求導(dǎo)可得其單調(diào)區(qū)間和極值;
(2)對求導(dǎo)可得在恒成立,設(shè),對求導(dǎo),可得有最小值,可得的取值范圍;
(3)對求導(dǎo),可得當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,可得可得的最大值,設(shè),對求導(dǎo),可得的最小值.
解:(1)當(dāng)時,,可得,
令,可得,
當(dāng)時,,單調(diào)遞減;
當(dāng),單調(diào)遞增;
可得當(dāng),取得極小值;
(2),,
即,在恒成立,
設(shè),可得,
令,可得,
當(dāng),,函數(shù)單調(diào)遞減,
當(dāng),,函數(shù)單調(diào)遞增,
當(dāng)有最小值,可得,
,;
(3)由,可得,
當(dāng),可得,
所以,單調(diào)遞增;
當(dāng)時,,
所以,單調(diào)遞減;
可得在單調(diào)遞增,在單調(diào)遞減,
又,可得的最大值
設(shè)
其中,可得,
故在單調(diào)遞增,可得,即,
故可得的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機(jī)選取了50名購買該家電的消費者,讓他們根據(jù)實際使用體驗進(jìn)行評分.
(Ⅰ)設(shè)消費者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價與年齡有關(guān).
好評 | 差評 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨立性檢驗中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,垂直于以為直徑的圓所在的平面,點是圓周上異于,的任意一點,則下列結(jié)論中正確的是( )
①
②
③平面
④平面平面
⑤平面平面
A.①②⑤B.②⑤C.②④⑤D.②③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
如果隨機(jī)調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;
若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;
在的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項預(yù)賽,成績?nèi)缦拢?/span>
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下結(jié)論正確的個數(shù)是( )
①若數(shù)列中的最大項是第項,則.
②在中,若,則為等腰直角三角形.
③設(shè)、分別為等差數(shù)列與的前項和,若,則.
④的內(nèi)角、、的對邊分別為、、,若、、成等比數(shù)列,且,則.
⑤在中,、、分別是、、所對邊,,則的取值范圍為.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com