【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習積極性高 | 18 | 7 | 25 |
學(xué)習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
如果隨機調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習積極性不高的學(xué)生的概率;
若不積極參加班級工作且學(xué)習積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;
在的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.
【答案】(1) (2)見解析;(3)
【解析】
名學(xué)生中,不積極參加班級工作且學(xué)習積極性不高的學(xué)生有19人,由此能求出事件A:抽到不積極參加班級工作且學(xué)習積極性不高的學(xué)生的概率.
不積極參加班級工作且學(xué)習積極性高的7名學(xué)生中有兩名男生,設(shè)為A,B,另外五名女生設(shè)為a,b,c,d,e,現(xiàn)從中抽取兩名學(xué)生參加某項活動,能用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果.
事件B:兩名學(xué)生中恰有1名男生,則事件B包含的基本事件有10種,由此能求出事件B:兩名學(xué)生中恰有1名男生的概率.
名學(xué)生中,不積極參加班級工作且學(xué)習積極性不高的學(xué)生有19人,
事件A:抽到不積極參加班級工作且學(xué)習積極性不高的學(xué)生的概率.
不積極參加班級工作且學(xué)習積極性高的7名學(xué)生中有兩名男生,設(shè)為A,B,另外五名女生設(shè)為a,b,c,d,e,
現(xiàn)從中抽取兩名學(xué)生參加某項活動,
用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果有21種,分別為:
AB,Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,ab,ac,ad,ae,bc,bd,be,cd,ce,de.
事件B:兩名學(xué)生中恰有1名男生,
則事件B包含的基本事件有10種,分別為:
Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,
事件B:兩名學(xué)生中恰有1名男生的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面為菱形,且,,,與相交于點.
(1)求證:底面;
(2)求直線與平面所成的角的值;
(3)求平面與平面所成二面角的值.(用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長為1,為線段,上的動點,過點的平面截該正方體的截面記為S,則下列命題正確的是______
①當且時,S為等腰梯形;
②當分別為,的中點時,幾何體的體積為;
③當M為中點且時,S與的交點為R,滿足;
④當M為中點且時,S為五邊形;
⑤當且時,S的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣一中學(xué)的同學(xué)為了解本縣成年人的交通安全意識情況,利用假期進行了一次全縣成年人安全知識抽樣調(diào)查.已知該縣成年人中的擁有駕駛證,先根據(jù)是否擁有駕駛證,用分層抽樣的方法抽取了100名成年人,然后對這100人進行問卷調(diào)查,所得分數(shù)的頻率分布直方圖如下圖所示.規(guī)定分數(shù)在80以上(含80)的為“安全意識優(yōu)秀”.
擁有駕駛證 | 沒有駕駛證 | 合計 | |
得分優(yōu)秀 | |||
得分不優(yōu)秀 | 25 | ||
合計 | 100 |
(1)補全上面的列聯(lián)表,并判斷能否有超過的把握認為“安全意識優(yōu)秀與是否擁有駕駛證”有關(guān)?
(2)若規(guī)定參加調(diào)查的100人中分數(shù)在70以上(含70)的為“安全意識優(yōu)良”,從參加調(diào)查的100人中根據(jù)安全意識是否優(yōu)良,按分層抽樣的方法抽出5人,再從5人中隨機抽取3人,試求抽取的3人中恰有一人為“安全意識優(yōu)良”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
(1)當時,設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)是的導(dǎo)函數(shù),若對任意的恒成立,求的取值范圍;
(3)設(shè)函數(shù),當時,求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求證:平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標原點,動點在圓外,過點作圓的切線,設(shè)切點為.
(1)若點運動到處,求此時切線的方程;
(2)求滿足的點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,平面側(cè)面,且
(1)求證: ;
(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com